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RÉSUMÉ EN FRANÇAIS

0.1 Contexte

Les modèles d’apprentissage profond (Deep Learning, DL) ont rapidement gagné en popu-
larité à la fois dans l’industrie et dans de nombreux domaines liés au calcul scientifique, comme
par exemple la reconnaissance vocale et la vision par ordinateur [1], la climatologie [2], la
recherche sur la fusion nucléaire [3], la recherche sur le cancer [4], la médecine personnal-
isée [5] ou l’épidémiologie [6]. À mesure que les volumes de données et leur complexité aug-
mentent, les modèles d’apprentissage profond ont évolué sous tous les aspects : en taille (nom-
bre de paramètres), en profondeur (nombre de couches de neurones) et architecturalement.
Malgré la convergence grandissante entre apprentissage automatique et calcul haute perfor-
mance (High-Performance Computing, HPC) [7], qui a conduit à l’adoption de diverses tech-
niques de parallélisation [8] (parallélisme de données, de modèle, ou hybride), l’entraînement
desmodèles reste une tâche très gourmande en ressources. En particulier, la puissance de calcul
requise pour l’entraînement de modèles d’apprentissage automatique double environ tous les
6 mois depuis 2010 [9].

Les modèles d’apprentissage automatique sont généralement entraînés sur de grands sys-
tèmes multi-GPU qui ont accès au jeu de données d’entrée dès le début de la procédure (par
exemple, via un système de fichiers parallèle). Une technique d’optimisation itérative est utilisée
(par exemple, l’algorithme du gradient stochastique) pour revisiter les données d’entraînement
plusieurs fois jusqu’à convergence. Cependant, de plus en plus d’applications nécessitent d’être
entraînées avec des ensembles de données illimités, fréquemment mis à jour. Par exemple, les
applications scientifiques acquérant des données expérimentales via des capteurs doivent rapi-
dement les analyser afin d’ajuster une expérience en cours (par exemple, pour déclencher une
décision automatisée). Dans ce cas de figure, réentraîner le modèle de zéro à chaque fois que
de nouveaux échantillons sont rendus disponibles n’est pas envisageable : à mesure que les
données d’entraînement s’accumulent, cette procédure prendrait de plus en plus de temps et
consommerait toujours plus de ressources (de calcul et de stockage), et donnant lieu à des temps
d’exécution prohibitifs. D’autres cas d’utilisation comme les jumeaux numériques [10, 11] né-
cessitent généralement une infrastructure d’exécution hybride : les dispositifs périphériques
(edge devices) créent des flux de données d’entrée, qui sont traités par des applications d’analyse
de données et d’apprentissage automatique dans le Cloud, et des simulations sur de grands
systèmes HPC spécialisés fournissent des prédictions sur l’état futur du système. Ces applica-
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tions reposent sur des interactions dynamiques qui nécessitent de prendre en compte les don-
nées acquises en temps réel. Ce paradigme ouvre de nouvelles perspectives pour le pilotage en
temps réel des calculs, la reconfiguration dynamique des flux de travaux (workflows) ou le re-
calibrage des paramètres en cours d’exécution. Cette approche d’apprentissage en temps réel,
que nous appelons Apprentissage Continu [12, 13], permet l’incorporation au modèle de nou-
velles connaissances au fil du temps, garantissant qu’il reste efficace à tout moment pendant
l’entraînement.

Une approche d’apprentissage continu (continual learning, CL) consiste à entraîner lemodèle
demanière incrémentale (en poursuivant l’entraînement avec desmises à jour relativement peu
coûteuses basées uniquement sur les nouveaux échantillons de données). Si les incréments de
données sont petits, une telle approche permet de limiter l’utilisation des ressources de calcul.
Malheureusement, cela peut également entraîner une détérioration rapide des performances
prédictives du modèle — un phénomène connu sous le nom d’oubli catastrophique [14]. Plus
précisément, l’entraînement incrémental introduit un biais en faveur des nouveaux échantillons,
conduisant le modèle à renforcer les connaissances récentes au détriment de celles précédem-
ment acquises. Des différences plus importantes entre les distributions des anciennes et nou-
velles données d’entraînement amplifient le biais, souvent au point où une seule passe (epoch)
sur les nouvelles données suffit à effacer la plupart, sinon la totalité, des connaissances apprises
précédemment.

Nous sommes donc confrontés au défi d’éviter efficacement l’oubli catastrophique. D’une
part, nous visons à atteindre une précision proche de celle obtenue en réentraînant lemodèle
à partir de zéro, tandis que, d’autre part, nous visons à atteindre des performances élevées
(diminuant ainsi le temps d’entraînement), une bonne scalabilité ainsi qu’une faible utili-
sation des ressources comme dans le cas de l’entraînement incrémental. L’apprentissage con-
tinu vise à résoudre ce compromis : en un sens, il atténue l’oubli catastrophique en dotant
l’entraînement incrémental d’une stratégie pour maintenir les connaissances acquises plus tôt.

Les stratégies d’apprentissage continu proposées dans la littérature couvrent diversesméth-
odes, dont les suivantes : répétition (rehearsal) des échantillons d’entraînement historiques [15,
16, 17], co-entraînement d’un modèle génératif capable de reproduire les anciennes données
en générant de nouveaux échantillons à la demande, régularisation contraignant les mises à
jour des paramètres du modèle afin de limiter l’oubli catastrophique, et utilisation de com-
posants spécifiques à la tâche courante (impliquant l’augmentation de l’architecture dumodèle
d’apprentissage profond avec des structures spécifiquement conçues pour éviter l’oubli catas-
trophique).

Dans cette thèse, nous nous concentrons sur l’apprentissage continu basé sur la répéti-
tion. Avec cette stratégie, les échantillons d’entraînement historiques représentatifs des don-
nées vues précédemment sont conservés dans un tampon de répétition de taille limitée. De
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petits sous-ensembles d’échantillons du jeu de données (appelés minibatches) sont ensuite aug-
mentés pour inclure des échantillons supplémentaires venant du tampon de répétition. Enfin, le
tampon de répétition est mis à jour en remplaçant certains de ses échantillons d’entraînement
par de nouveaux. Un avantage de cette stratégie d’apprentissage continu est qu’elle ne nécessite
aucune modification de l’architecture du modèle, ni du processus d’entraînement. La répétition
est intégrée dans le flux de données ingéré par le modèle. Par contraste, les autres approches
nécessitent du code supplémentaire pour implémenter la régularisation, des modèles générat-
ifs supplémentaires et/ou un composant architectural spécifiquement conçu pour le problème
d’apprentissage en question.

Objectifs de recherche

Dans cette section, nous énumérons les trois principales contributions de cette thèse.

Mise à l’échelle de l’apprentissage continu basé sur la répétition intégré à l’entraînement
avec parallélisme de données

Les travaux antérieurs sur l’apprentissage continu basé sur la répétition [15, 16, 17] utilisent
un tampon de répétition local unique pour stocker les échantillons d’entraînement historiques
à fournir au modèle d’apprentissage profond. Par ailleurs, l’entraînement avec parallélisme de
données est largement utilisé pour réduire le temps d’entraînement. Il implique de répliquer
le modèle d’apprentissage profond, afin que chaque réplique soit entraînée en parallèle avec
différents fragments de données, tandis que les gradients sont moyennés pendant la rétroprop-
agation pour maintenir les répliques synchronisées. Dans une telle configuration distributée, il
est important de permettre un apprentissage continu basé sur la répétition performant, scalable
et efficace en ressources sur plusieurs GPU exploitant le parallélisme de données. Résoudre
cette limitation des approches de l’état de l’art est difficile pour deux raisons principales : (1) le
tampon de répétition doit s’intégrer de manière transparente au pipeline de données respons-
able de la lecture asynchrone des données d’entrée et de leur mise à disposition aux itérations
d’entraînement, ce qui implique de superposer la gestion du tampon de répétition avec à la
fois le pipeline de données et la boucle d’entraînement du modèle ; (2) il n’est pas suffisant de
simplement instancier des tampons de répétition indépendants, associés à chaque réplique du
modèle pour permettre le parallélisme de données : au lieu de cela, des techniques distribuées
sont nécessaires pour permettre aux tampons de répétition de collaborer au niveau global afin
d’éviter les biais introduits par l’échantillonnage localisé.

Les recherches existantes traitent généralement des questions de l’apprentissage continu et
de l’apprentissage profond distribué séparément, c’est-à-dire que les études sur l’apprentissage
continu sont souvent menées sur un seul nœud de calcul [18, 19, 20]. Un premier objectif de
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cette thèse est d’étudier comment les méthodes d’apprentissage continu peuvent tirer parti du
parallélisme de données sur plusieurs nœuds, ce qui est l’une des principales techniques pour
atteindre la scalabilité de la procédure d’entraînement sur les systèmes HPC. Les performances
prédictives de tels algorithmes pourrait bénéficier de la mémoire aggrégée par l’instanciation
de tampons de répétition distribués.

Permettre la mise à l’échelle des techniques d’apprentissage continu basées sur la répétition
plus avancées

Avec une diversité croissante des stratégies de répétition pour l’apprentissage continu, il est
important de découpler le tampon de répétition de la tâche d’apprentissage, de sorte qu’il de-
vienne une abstraction générique qui implémente ses propres optimisations complémentaires.
Rendre le tampon générique est difficile pour deux raisons principales : (1) le tampon de répéti-
tion doit stocker, échantillonner et remplacer des données hétérogènes indépendamment de
la stratégie de répétition et de la tâche d’apprentissage en cours (par exemple, les tâches de
classification vs. les tâches génératives) ; et (2) les techniques distribuées permettant le pas-
sage à l’échelle mentionnées précédemment doivent être exploitées pour que le système puisse
stocker, supprimer et exposer ces données hétérogènes efficacement, à grande échelle, en util-
isant des techniques spécialisées. De plus, rendre le tampon de répétition distribué générique
par rapport aux échantillons de données stockés permet l’applicabilité de notre approche à des
tâches d’apprentissage génératif, qui utilisent généralement plus de données par échantillon
d’entraînement (plus précisément, les données de vérité (ground truth) ne consistent pas en
une seule étiquette de classe comme avec les tâches de classification). Ainsi, dans le cas de
telles tâches d’apprentissage continu génératif, le tampon doit également permettre la gestion
unifiée des échantillons d’entraînement au lieu de la gestion séparée par classe des échantillons
d’entraînement comme cela est fait avec les tâches de classification.

Nous ne sommes pas au courant d’une abstraction de tampon de répétition qui offre un sup-
port pour une large gamme de paramètres d’apprentissage continu basés sur la répétition. Un
deuxième objectif de cette thèse est d’étudier comment une disposition de données générique
peut aider à implémenter des stratégies de répétition plus avancées, améliorant ainsi la précision
tout en bénéficiant de l’évolutivité de l’entraînement sur les systèmes HPC.

Illustration des avantages de l’apprentissage continu génératif pour un cas d’utilisation réel

Les flux de travaux HPCmodernes ne se limitent pas aux clusters HPC : ils doivent acquérir
des données en temps réel à partir d’instruments scientifiques situés à la périphérie (edge), les
envoyer aux machines HPC pour des analyses supplémentaires, et éventuellement agir sur les
résultats en temps réel (par exemple, pour calibrer l’instrument scientifique afin d’orienter
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l’expérience dans une direction spécifique). Cependant, les algorithmes et simulations con-
ventionnels utilisés dans ces flux de travaux pour l’analyse de données sont intensifs en calcul,
et ne peuvent donc pas traiter les grandes quantités de données générées par ces instruments
à la volée. Des débits de données supérieurs à 10 Gbps [21] peuvent être atteints. Pour relever
ce défi, les scientifiques se sont tournés vers les méthodes d’apprentissage profond, remplaçant
les techniques d’analyse conventionnelles par des modèles de substitution beaucoup plus rapi-
des. Cependant, ces modèles nécessitent des mises à jour continues pour maintenir leur perfor-
mance prédictive et s’adapter aux conditions expérimentales évolutives. Ainsi, les chercheurs
ont développé des flux de travaux innovants qui intègrent les trois composantes suivantes : (1)
l’acquisition de données à la périphérie, (2) l’entraînement en ligne, en parallèle, d’un modèle
de substitution utilisant des techniques d’apprentissage continu sur un cluster HPC, et après
un certain temps, (3) l’inférence en temps réel utilisant le modèle obtenu à la périphérie. En ex-
ploitant l’apprentissage continu, ces flux de travaux peuvent améliorer leur précision au cours
de l’expérience, atteignant finalement un état où lemodèle peut être utilisé seul pour l’inférence.
Cette approche a le potentiel de réduire considérablement les coûts de calcul et de permettre le
traitement des données en temps réel dans les configurations idéales.

Pour démontrer l’efficacité de cette approche dans un cadre réel, nous visons à appliquer
nos contributions à un cas d’utilisation spécifique, en exploitant l’apprentissage continu pour
améliorer la qualité de prédiction d’unmodèle génératif. Notre objectif est de montrer que cette
méthode peut atteindre des performances acceptables par rapport aux simulations convention-
nelles, tout en accélérant la convergence de l’entraînement du modèle grâce à l’apprentissage
continu.

Contributions

Les principales contributions de cette thèse, répondant à chacun des trois objectifs précé-
dents, peuvent être résumées comme suit :

Un tampon de répétition distribué pour permettre l’apprentissage continu à grande échelle

Nous proposons une nouvelle abstraction de tamponde répétition visant à exploiter efficace-
ment les systèmes distribués. Plus précisément, nous (1) définissons le concept de tampons de
répétition pour traiter l’apprentissage continu et introduisons des extensions pour les utiliser
dans l’entraînement avec parallélisme de données, nous (2) présentons des principes clés tels
que des techniques asynchrones permettant de masquer le surcoût de gestion des tampons de
répétition et de générer un large éventail de combinaisons pour les augmentations de mini-
batches, et nous (3) illustrons les avantages d’une telle approche sur une tâche d’apprentissage
de classification couramment utilisées dans la communauté de vision par ordinateur.
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Nous étudions ensuite les compromis introduits par l’apprentissage continu à grande échelle
en termes de temps d’entraînement, de précision du modèle et d’utilisation de la mémoire en
utilisant le benchmark ImageNet. Pour ce faire, nous réalisons des expériences jusqu’à 128 GPU
du supercalculateur ThetaGPU, afin de comparer notre approche avec des références représen-
tatives de l’entraînement à partir de zéro (la limite supérieure –optimale– en termes de pré-
cision) et de l’entraînement incrémental (la limite inférieure –optimale– en termes de temps
d’entraînement). Les résultats montrent que l’apprentissage continu basé sur la répétition at-
teint une précision de classification top-5 proche de la limite supérieure, tout en présentant un
temps d’exécution proche de la limite inférieure.

Ce travail est une collaboration avec Bogdan Nicolae et Ian Foster du Laboratoire National
d’Argonne (USA), dans le cadre de l’équipe associée UNIFY. Il a été publié lors de la conférence
IEEE/ACM CCGrid 2024 (veuillez consulter [22]).

Un tampon distribué générique en soutien à des techniques de répétition plus avancées

Cette contribution introduit un ensemble d’abstractions qui n’imposent aucune contrainte
particulière sur la la forme des données d’entraînement stockés dans le tampon de répétition,
permettant ainsi l’adaptation du système à une large gamme de tâches d’apprentissage pro-
fond et de stratégies de répétition. En outre, nous introduisons le concept de tuples annotés de
tenseurs afin de servir les échantillons d’entraînement représentatifs et leurs états associés au
framework d’IA. Une telle approche (1) répond au besoin de supporter davantage de stratégies
de répétition (notamment des stratégies utilisant la distillation de connaissances) tout en (2)
augmentant de manière transparente les minibatches produits par les pipelines de données des
différents nœuds de calcul.

Les premiers résultats de ce travail ont été obtenus lors du stage de license deMalvin Cheval-
lier, dans le cadre de l’obtention de son diplôme d’ingénieur.

Intégration avec une application de streamingHPC réelle bénéficiant de l’apprentissage con-
tinu génératif

Les algorithmes d’analyse de données conventionnels sont souvent intensifs en calcul et
peinent à traiter les grandes quantités de données générées par les instruments scientifiques à la
volée. Pour relever ce défi, des modèles d’apprentissage automatique sont intégrés dans les flux
de travauxHPC afind’accélérer l’analyse de données. Une approche courante pour l’application
de telsmodèles dans ce contexte est la suivante : au début de l’expérience, une analyse classique,
coûteuse en calcul, est effectuée sur les données d’entrée envoyées au clusterHPC. Le résultat de
ce flux de travaux consommateur dédié sert de données de vérité (ground truth) pour unmodèle
entraîné en parallèle. À mesure que l’expérience progresse, si le modèle apprend à prédire les
données de vérité avec une grande fidélité, une copie peut être envoyée à la périphérie et être
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utilisée à la place de l’analyse classique, améliorant ainsi la latence et le débit du traitement à
long terme. Bien que cette approche entraîne un surcoût initial plus élevé en raison du besoin de
ressources HPC supplémentaires pour entraîner le modèle, elle permet finalement une analyse
de données plus rapide. De plus, l’entraînement du modèle peut être poursuivi même après le
passage au régime d’inférence, permettant l’envoi de mises à jour périodiques à la périphérique
garantissant une qualité améliorée avec le temps. Pour que ce flux de travaux soit efficace, deux
métriques clés sont cruciales : (1) la qualité des prédictions dumodèle et (2) la vitesse à laquelle
le modèle converge dans le cadre de l’apprentissage continu.

Nous présentons des résultats pour le cas des tâches d’apprentissage génératif, que nous
illustrons avec une application reposant sur des flux de données : la reconstruction d’images
ptychographiques [23]. À cette fin, nous présentons des résultats obtenus en utilisant le mod-
èle génératif PtychoNN [24] dans le contexte de l’apprentissage continu pour deux approches
différentes à la répétition (sélection aléatoire simple des échantillons représentatifs et Dark Ex-
perience Replay [25]). Les résultatsmontrent un gain par rapport à l’apprentissage continu basé
sur l’entraînement incrémental et à la reconstruction conventionnelle basée sur des algorithmes
intensifs en calcul, en qualité dans un cas et en vitesse d’exécution dans l’autre.

Ce travail est une collaboration avec Bogdan Nicolae, Tekin Bicer et Ian Foster du Labora-
toire National d’Argonne (USA), dans le cadre de l’initiative Joint Laboratory for Extreme Scale
Computing (JLESC). Il a été publié sous forme d’article de journal dans FGCS - Future Genera-
tion Computer Systems, JLESC Special Issue (veuillez consulter [26]).

Publications

Revues Internationales

— ThomasBouvier, BogdanNicolae,HugoChaugier,AlexandruCostan, Ian Foster, Gabriel
Antoniu. Efficient Data-Parallel Continual Learning with Asynchronous Distributed Re-
hearsal Buffers. ACM/IEEE CCGrid 2024 - The 24th IEEE/ACM international Symposium
on Cluster, Cloud and Internet Computing, May 2024, Philadelphia, United States. Citation
: [22].

Conférences Internationales

— Thomas Bouvier, Bogdan Nicolae, Alexandru Costan, Tekin Bicer, Ian Foster, Gabriel
Antoniu. EfficientDistributedContinual Learning for SteeringExperiments inReal-Time.
FGCS - Future Generation Computer Systems, JLESC (Joint Laboratory for Extreme Scale Com-
puting) Special Issue. Citation : [26].
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Posters dans des Conférences Internationales

— ThomasBouvier, AlexandruCostan,GabrielAntoniu.Heterogeneity-awareDeepLearn-
ing Workload Deployments on the Computing Continuum. IPDPS 2021 - 35th IEEE In-
ternational Parallel and Distributed Processing Symposium, May 2021, Portland (virtuel),
United States. Citation : [27].

Posters dans des Conférences Nationales

— Thomas Bouvier, Alexandru Costan, Gabriel Antoniu. Deploying Heterogeneity-aware
Deep Learning Workloads on the Computing Continuum. BDA 2021 - 37ème Conférence
sur la Gestion de Données - Principes, Technologies et Applications, Oct 2021, Paris, France.
Citation : [28].

Logiciels

Contributions Principales

Neomem [29]

Description scientifique : L’apprentissage continu basé sur la répétition est une approche
prometteuse pour contrer le problème de l’oubli catastrophique, mais les recherches à ce jour
n’ont pas abordé les questions de performance et de scalabilité de l’entraînement. Pour combler
ce manque, nous proposons une approche basée sur un tampon de répétition distribué qui
complète efficacement l’entraînement avec parallélisme de données sur plusieurs GPU, afin
d’atteindre une grande précision, un temps d’entraînement court, et une bonne scalabilité. Cette
approche exploite un ensemble de tampons (locaux à chaque GPU) et utilise plusieurs tech-
niques asynchrones pour mettre à jour ces tampons locaux de manière parallèle (embarrassingly
parallel), tout en gérant le surcoût de communications nécessaires pour augmenter les mini-
batches d’entrée en utilisant un échantillonnage global non biaisé.

Description fonctionnelle : L’entraînement des réseaux de neurones à partir de données
générées en continu pose des défis liés à l’oubli des connaissances précédemment acquises, un
phénomène connu sous le nomd’oubli catastrophique. Une solution efficace consiste à rejouer cer-
taines données précédemment observées pour maintenir les connaissances associées. Neomem
met en œuvre cette approche, visant à obtenir d’excellentes performances prédictives au prix
d’une légère augmentation du temps d’entraînement. Notre approche permet l’exploitation du
parallélisme de données sur des dizaines de GPU, la rendant applicable aux simulations scien-
tifiques au sein de la communauté du calcul haute performance (HPC).

— Lien : https://github.com/thomas-bouvier/neomem
— Taille et langage(s) : ∼2000 lignes, C++ et ∼1000 lignes de code de test, Python.
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— Licence : GNU General Public License v3.0

distributed-continual-learning [30]

Description scientifique : L’apprentissage continu nécessite d’apprendre à partir d’un flux
de données non stationnaire, un problème fondamental pour un entraînement durable et effi-
cace des réseaux de neurones profonds au fil du temps. Malheureusement, les bibliothèques
d’apprentissage profond ne fournissent que des primitives pour l’entraînement hors ligne, sup-
posant que les données d’entrée sont (1) indépendantes et identiquement distribuées (i.i.d.)
et (2) disponibles avant le processus d’entraînement. distributed-continual-learning fournit un
ensemble d’outils et d’abstractions nécessaires pour expérimenter avec l’apprentissage continu.

Description fonctionnelle : distributed-continual-learning est une bibliothèque open source
qui étend PyTorch en fournissant un support de première classe pour les flux de jeux de don-
nées, l’entraînement incrémental et le parallélisme de données en utilisant des tampons de
répétition distribués. Cette bibliothèque offre un support pour une large gamme de scénarios
d’apprentissage continu, de tâches d’apprentissage (problèmes de classification et de généra-
tion) et de stratégies d’apprentissage continu basées sur la répétition.

— Lien : https://github.com/thomas-bouvier/distributed-continual-learning
— Taille et langage(s) : ∼4000 lignes, Python.
— Licence : GNU General Public License v3.0

Contribution à un logiciel existant

Spack [31]

Description scientifique : La complexité croissante des librairies HPC pose des défis signifi-
catifs pour les utilisateurs de clusters HPC. Les dépendances complexes des applications scien-
tifiques, qui nécessitent des versions spécifiques de compilateurs, d’implémentations de stan-
dards comme Message Passing Interface (MPI), de plateformes comme Compute Unified De-
vice Architecture (CUDA) et d’autres bibliothèques de dépendances, rendent l’adoption d’une
seule pile logicielle standardisée difficile. De plus, la taille combinatoire de l’espace de configu-
ration complexifie la gestion de plusieurs configurations. En réponse à ces défis, Spack apparaît
comme un outil indispensable conçu pour automatiser la gestion de tels environnements HPC.
En fournissant un cadre flexible et extensible pour la gestion des dépendances et des configu-
rations logicielles, Spack améliore la productivité de la recherche scientifique.

Description fonctionnelle : Spack fournit une syntaxe de spécification récursive pour invo-
quer des compilations paramétrées de packages et de dépendances. Il permet à un nombre quel-
conque de résultats de compilation de coexister sur le même système et garantit que les pack-
ages installés peuvent localiser leurs dépendances indépendamment de l’environnement. Spack
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utilise des directives de package déclaratives (appelées specs) pour exprimer toutes les compat-
ibilités intersectées et disjointes qu’une version d’un package a avec une autre. Spack manip-
ule également le concept de variantes, ou données clé-valeur, qui sont déclarées dans la recette
(recipe) du package, et avec les versions peuvent également être configurées par l’utilisateur
final via des paramètres en ligne de commande.

Notre contribution : Les recettes de packages permettent à Spack d’encapsuler la logique
de compilation pour différentes versions, compilateurs, options de compilation, plateformes,
microarchitectures GPU et combinaisons de dépendances au même endroit. En substance, une
recette traduit une spec en logique de compilation exécutée par le système de compilation du
package en question. Les variantes correspondent souvent directement aux flags qui y sont in-
tégrés. J’ai écrit des recettes pour de nombreux packages dont Neomem et distributed-continual-
learning dépendent, pour qu’ils puissent être installés sur des supercalculateurs facilement en
utilisant Spack. En particulier : py-nvidia-dali, py-continuum, nvtx, py-imagehash, thrift,
py-datasets, fribidi, py-wandb, py-e2clab, et py-codecarbon. J’ai également corrigé des prob-
lèmes dans les recettes suivantes : arrow, py-arrow, py-horovod, scipy, py-pytest-mock, et
py-dm-tree.

— Lien : https://github.com/spack/spack
— Taille et langage(s) : le volume de mes contributions à la base de code existante est

d’environ 800 lignes, Python.
— Licence : Apache 2.0

Horovod [32]

Description scientifique : L’entraînement des modèles d’apprentissage profond nécessite
de grandes quantités de calcul, souvent fournies par des GPUs dans des clusters spécialisés.
Afin d’exploiter de nombreux GPUs permettant d’accélérer ce processus, Horovod utilise les
principes de MPI pour distribuer efficacement les gradients. Quelques-unes des primitives util-
isées sont size, rank, local rank, allreduce, allgather, broadcast, et alltoall. Selon les
techniques employées, cette communication peut entraîner un surcoût allant de négligeable à
significatif : Horovod utilise ainsi une communication inter-GPU efficace via une réduction en
anneau (ring reduction). En outre, Horovod prend en charge la bibliothèque de communica-
tions collectives NVIDIA (NCCL) pour optimiser davantage la communication entre les GPUs,
lui permettant d’obtenir une bonne efficacité de mise à l’échelle sur des tâches d’entraînement
distribuées.

Description fonctionnelle :Horovod est conçupour prendre un script d’entraînementmono-
GPU et l’exécuter sur plusieurs GPUs oumême plusieursmachines en exploitant le parallélisme
de données, tout en nécessitant seulement quelques lignes de modification du code utilisateur.
Horovod s’intègre parfaitement avec des frameworks d’apprentissage profond populaires tels

10

https://github.com/spack/spack


0.1. Contexte

que TensorFlow ou PyTorch, tout en permettant un entraînement distribué efficace grâce à une
communication inter-GPU efficace via une réduction en anneau (ring reduction).

Notre contribution : J’ai corrigé certains bugs dans la base de code originale, notamment
ceux liés à la prise en charge de C++17, nécessaire pour compiler avec PyTorch >= 2.1. Au
cours de ma thèse de trois ans, j’ai observé une diminution des contributions d’Uber au projet
Horovod. Cette tendance s’est poursuivie au point où le projet n’est plus maintenu depuis un
an. La communauté utilise maintenant les solutions d’entraînement distribuées intégrées dans
PyTorch, qui peuvent désormais tirer parti dumatériel HPC. Afin de conserver lamême base de
code pour tousmes travaux de doctorat, j’ai forké le projet original pour le maintenir moi-même
sous le nom de Khorovod.

— Lien : https://github.com/khorovod-ai/khorovod
— Taille et langage(s) : ∼100 lignes, Python/C++.
— Licence : Apache 2.0

E2Clab [33]

Description scientifique : E2Clab est un framework conçu pour permettre aux chercheurs
de reproduire le comportement des applications dans un environnement contrôlé. Son objectif
principal est d’analyser les performances de bout en bout des applications en liant les résultats
à des configurations de paramètres spécifiques. E2Clab offre une méthodologie pour répondre
à des questions telles que : Comment identifier les goulots d’étranglement de l’infrastructure ? Quels
paramètres système et réglages d’infrastructure influencent les performances, et dans quelle mesure ?

Description fonctionnelle : E2Clab présente des fonctionnalités de haut niveau qui perme-
ttent : (1) des expériences garantissant la répétabilité, la réplicabilité et la reproductibilité de la
recherche ; (2) la cartographie des composants de l’application (edge, fog et cloud/HPC) sur
le banc d’essai physique ; (3) la variation et la mise à l’échelle progressive des scénarios expéri-
mentaux ; et (4) la gestion des expériences pour le déploiement, l’exécution et le monitoring sur
des plateformes telles que Grid’5000, Chameleon et FIT IoT LAB.

Notre contribution : J’ai ajouté le concept de configurations d’application pour initier des
déploiements se rattachant à une configuration encapsulant des hyperparamètres spécifiques.
Cette fonctionnalité permet une expérimentation plus rapide en réutilisant des configurations
déjà testées et s’intègre parfaitement avec distributed-continual-learning. Des hyperparamètres
spécifiques peuvent être remplacés via la ligne de commande.

— Lien : https://gitlab.inria.fr/E2Clab/e2clab
— Taille et langage(s) : ∼3000 lignes, Python
— Licence : GNU General Public License v3.0
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Organisation de cette thèse

Cette thèse est organisée en huit chapitres.
Le Chapitre 1 résume les objectifs de notre recherche, ainsi que les contributions et publica-

tions résultantes.
Le Chapitre 2 présente le contexte de notre recherche. Nous y introduisons la pertinence de

l’Apprentissage Continu pour réduire la latence entre l’acquisition des données et la génération
des informations issues par les modèles d’apprentissage. Ensuite, il discute des défis à résoudre
liés à (1) l’apprentissage à partir de données non stationnaires, un problème introduisant un
biais connu sous le nom d’oubli catastrophique dans la communauté d’apprentissage continu ;
(2) la mise à l’échelle des tâches d’entraînement de modèles d’apprentissage profond, en guar-
antissant à la fois une bonne généralisation statistique et une bonne utilisation des ressources
; et (3) la mise à l’échelle des tâches d’entraînement de modèles d’apprentissage continu en
tenant compte de ces deux contraintes.

Le Chapitre 3 définit le concept de tampons de répétition pour remédier à l’oubli catas-
trophique dans l’apprentissage continu, et introduit les extensions nécessaires pour les utiliser
dans l’entraînement avec parallélisme de données sur de nombreux GPUs.

Dans le Chapitre 4, nous introduisons des principes de conception tels que des techniques
asynchrones pourmasquer le surcoût de gestion des tampons de répétition, afin de permettre
un spectre complet de combinaisons pour les augmentations deminibatches. Nous y parvenons
en échantillonnant les tampons de répétition des répliques demodèles d’apprentissage résidant
sur les nœuds distants, en utilisant des schémas de communication all-to-all à faible surcoût, et
compatibles RDMA. Nous implémentons un prototype de tampon de répétition distribué que
nous avons intégré avec PyTorch, un framework d’IA largement utilisé.

Dans le Chapitre 5, nous étudions les compromis introduits par l’apprentissage continu à
grande échelle en termes de temps d’entraînement, de précision et d’utilisation de la mémoire
en utilisant le benchmark ImageNet. Nous rapportons des expériences approfondies utilisant
128 GPUs du supercalculateur ThetaGPU du Laboratoire National d’Argonne pour le cas
des tâches de classification. À cette fin, nous présentons trois modèles différents (ResNet-50,
ResNet-18, GhostNet-50) et quatre tâches dérivées du jeu de données ImageNet-1K. Les résul-
tats montrent que notre approche peut améliorer la précision d’évaluation top-5 de 23,1% à
80,55% par rapport à l’entraînement incrémental, avec seulement une légère augmentation du
temps d’exécution.

Dans le Chapitre 6, nous proposons une généralisation des tampons de répétition capables
de stocker des données hétérogènes, et de les servir sous forme de tuples annotés de tenseurs.
Cette extension permet d’exposer des échantillons représentatifs ainsi que leurs états associés
au framework d’AI durant l’entraînement, ce qui répond au besoin de supporter des stratégies
de répétition plus avancées. Nous discutons ensuite de la manière dont le tampon de répétition
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distribué peut être utilisé pour permettre des tâches d’apprentissage continu avec des modèles
génératifs sur plusieurs GPUs.

Dans le Chapitre 7, nous motivons les avantages de l’apprentissage continu pour les appli-
cations scientifiques basées sur le streaming, en les illustrant dans le contexte de la reconstruc-
tion ptychographique [23] avec des modèles génératifs —une application de streaming HPC en
conditions réelles—. Nous rapportons des résultats expérimentaux obtenus avec le modèle Pty-
choNN [24] pour deux types différents de répétition (sélection aléatoire simple et Dark Experi-
ence Replay), qui semontrent plus efficaces que l’apprentissage continu basé sur l’entraînement
incrémental et à la reconstruction traditionnelle basée sur des algorithmes intensifs en calcul.

Enfin, le Chapitre 8 conclut cette thèse et présente les perspectives ouvertes par nos contri-
butions.
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1.1 Context

Deep learning (DL)models are rapidly gaining traction both in industry and scientific com-
puting in many areas, including speech and vision [1], climate science [2], fusion energy sci-
ence [3], cancer research [4], personalized medicine [5] and pandemics [6]. As data sizes and
pattern complexity keep increasing, DL models capable of learning such data patterns have
evolved from all perspectives: size (number of parameters), depth (number of layers/tensors),
and structure (directed graphs that feature divergent branches, fork-join, etc.). Despite increas-
ing convergence between DL and High-Performance Computing (HPC) [7], which has led to
the adoption of various parallelization techniques [8] (data-parallel, model parallel, hybrid),
the training of DL models remains a time-consuming and resource-intensive task. Indeed, the
amount of computation used in the largest AI training runs has doubled about every 6 months
since 2010 [9].

DLmodels are typically trained on large, many-GPU systems that have access to all training
data from the beginning (e.g., from a parallel file system), by using an iterative optimization
technique (e.g., stochastic gradient descent) to revisit the training data repeatedly until con-
vergence. Today, however, DL applications increasingly need to be trained with unbounded
datasets that are updated frequently. For example, scientific applications using experimental
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devices such as sensors need to quickly analyze the experimental data in order to steer an on-
going experiment (e.g., trigger an automated decision). In this case, repeatedly retraining the
model from scratch as new samples arrive is not an option: as training data keeps accumulating,
this would take increasingly longer and consumemore resources (compute and storage space),
leading to prohibitive runtimes. Other use cases like digital twins [10, 11] typically require a
hybrid execution infrastructure: edge devices create streams of input data, which are processed
by data analytics and machine learning applications in the Cloud, and simulations on large,
specialized HPC systems provide insights into and prediction of future system state. Such ap-
plications rely on dynamic interactions that prompt the need to accommodate data acquired
in real-time. This paradigm opens new perspectives for real-time steering of computations, dy-
namic workflow reconfiguration, or re-calibration of parameters at runtime. Such a real-time
learning approach, that we refer to as Continual Learning [12, 13], enables the incorporation
of new knowledge over time, ensuring that the model remains accurate at any time during the
training.

One approach to the Continual Learning (CL) problem is to train the DL model incremen-
tally (i.e., the training proceeds with relatively inexpensive updates to the model’s parameters
based on just the new data samples). If data increments are small, such an approach achieves
low resource utilization. Unfortunately, it can also cause the accuracy of the DL model to dete-
riorate quickly—a phenomenon known as catastrophic forgetting [14]. Specifically, incremental
training introduces a bias in favor of new samples, causing themodel to reinforce recent patterns
at the expense of previously acquired knowledge. Larger differences between the distributions
of the old vs. new training data amplifies the bias, often to the point where a single pass over
the new training data is enough to erase most, if not all, of the patterns learned previously.

Thus, we are faced with the challenge of avoiding catastrophic forgetting efficiently.On the
one hand,we aim to achieve an accuracy close to the one achieved by retraining theDLmodel
from scratch, while, on the other hand, we aim to achieve high performance (decreasing the
overall training time), scalability, and low resource utilization just like incremental training.
Continual learning aims to address this trade-off: in a broad sense, it mitigates catastrophic
forgetting by complementing incremental trainingwith a strategy to retain patterns seen earlier.

Proposed CL strategies include various methods: rehearsing historic training samples [34],
co-training a generative DL model that can mimic old patterns by generating new samples on
demand, regularization (i.e., rules that constrain DLmodel parameter updates to prevent catas-
trophic forgetting), and instantiating task-specific components (i.e., augmenting the DL model
architecture with structures specifically designed to avoid catastrophic forgetting).

In this thesis, we focus on continual learning based on rehearsal. With this strategy, historic
training samples that are representative of patterns seen earlier are retained in a limited-size
rehearsal buffer. Small subsets of the dataset’s training samples (called minibatches) are then
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augmented to include additional samples from the rehearsal buffer. Finally, the rehearsal buffer
is updated by replacing some of its training samples with newer ones. A benefit of this CL
strategy is that it requires no modifications to either the DL model architecture or the training
process. Instead, rehearsal is integrated into the data pipeline ingested by the model. In contrast,
other CL approaches require additional code to implement regularization, additional generative
DL models, and/or additional architectural component specifically designed for the learning
problem at hand.

1.2 Research Objectives

In this thesis, we are interested in the three following research objectives:

Scaling Rehearsal-based Continual Learning in the Context of Data-parallel Training

Prior work on rehearsal-based CL [16, 17] has employed a single local rehearsal buffer to
retain historic training samples fed to the DL model. On another note, data parallel training is
widely used to reduce the training time. It involves DL model replicas that are trained in par-
allel with different data shards, while the gradients are averaged during the backpropagation
to keep the replicas in sync. In such a distributed setting, it becomes important to enable high-
performance, scalable, and resource-efficient rehearsal based CL on multiple GPUs leveraging
data-parallel training. Addressing this limitation of state of art approaches is challenging for
two main reasons: (1) the rehearsal buffer needs to seamlessly integrate with the data pipeline
responsible for asynchronously reading the input data and feeding it to the training iterations,
which implies overlapping the management of the rehearsal buffer with both the data pipeline
and the training loop; (2) it is not enough to simply instantiate independent rehearsal buffers as-
sociated with each DL model replica to enable data parallelism: instead, distributed techniques
are needed to enable the rehearsal buffers to collaborate at global level in order to avoid biases
introduced by localized sampling.

Existing research typically addresses CL and distributed DL separately i.e., studies on con-
tinual learning are often conducted on a single compute node [18, 19, 20]. A first objective of
this thesis is to study how CLmethods can take advantage of data parallelization across nodes,
which is one of the main techniques to achieve training scalability on HPC systems. The ag-
gregated memory could benefit the accuracy achieved by such algorithms by instantiating dis-
tributed rehearsal buffers.

Enabling Scalability of More Advanced Rehearsal-based Continual Learning Techniques

With a growing diversity of rehearsal strategies for continual learning, it becomes impor-
tant to decouple the rehearsal buffer from the learning task, such that it becomes a generic
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abstraction that implements its own complementary optimizations. Making the buffer generic
is challenging for two main reasons: (1) the rehearsal buffer needs to store, sample and replace
heterogeneous data independently from both the rehearsal strategy and the learning task at
hand (e.g., classification tasks vs. generative tasks); and (2) the scalable distributed techniques
mentioned previously should be leveraged to enable the system to store, remove and expose
such heterogeneous data efficiently at scale using specialized data management techniques. Be-
sides, making the distributed rehearsal buffer generic with respect to the retained data samples
further allows for the applicability of our approach to generative learning tasks, which typically
leverage more data per training sample (specifically, the ground truth data doesn’t consist of a
single class label as with classification tasks). Thus, in the case of such generative CL tasks, the
buffer should also allow for the unifiedmanagement of training samples instead of the separate
per-class management of training samples as done with classification tasks.

We are not aware of any rehearsal buffer abstraction that provides support for a broad range
of rehearsal-based CL settings. A second objective of this thesis is to study how a generic data
layout can help implement more advanced rehearsal strategies, further improving accuracy
while benefiting from training scalability on HPC systems.

Illustrating the Benefits of Generative Continual Learning for a Real-life Use-case

Modern HPC workflows are not limited to HPC clusters: they need to acquire data in real-
time from scientific instruments located at the edge, send it to HPC machines for further ana-
lytics, and optionally act on the results in real-time (e.g., calibrate the scientific instrument to
steer the experiment in a specific direction). However, conventional algorithms and simula-
tions used in these workflows for data analysis are computationally intensive and cannot keep
up with the exploding amounts of data generated by these instruments. Data rates greater than
10 Gbps [21] can be reached. To address this challenge, scientists have turned to deep learn-
ing methods, replacing conventional analysis techniques with much faster surrogate DL mod-
els. However, these models require continuous updates to maintain their accuracy and adapt to
changing experimental conditions. Thus, researchers have developed innovativeworkflows that
integrate the three following components: (1) data acquisition at the edge, (2) online training
of a surrogate DL model using continual learning techniques on an HPC cluster, and eventu-
ally, (3) liveDL inference using themodel after convergence at the edge. By leveraging continual
learning, theseworkflows can improve in accuracy over the course of the experiment, ultimately
achieving a state where the model alone can be used for inference. This approach has the po-
tential to significantly reduce computational costs and enable real-time data processing in ideal
settings.

To demonstrate the effectiveness of this approach in a real-life setting, we aim to apply our
contributions to a specific use-case, leveraging continual learning to improve the accuracy of a

17



Chapter 1 – Introduction

generative model. Our goal is to show that this method can achieve acceptable accuracy com-
pared with conventional simulations, while also accelerating the training convergence of the
model through continual learning.

1.3 Contributions

The main contributions of this dissertation addressing each of the three previous objectives
can be summarized as follows:

A Distributed Rehearsal Buffer to Enable Continual Learning at Scale

We propose a novel rehearsal buffer abstraction that aims to leverage distributed systems ef-
fectively. Specifically, we (1) define the concept of rehearsal buffers to address continual learn-
ing, and introduce extensions to leverage them for data-parallel training, we (2) present key
design principles such as asynchronous techniques allowing to hide the overhead of managing
rehearsal buffers and to generate a full spectrumof combinations forminibatch augmentations,
and we (3) illustrate the benefits of such an approach using a classification learning task com-
monly used in the computer vision community.

We then study the trade-offs introduced by large-scale CL in terms of training time, accuracy
and memory usage using the ImageNet benchmark. To do so, we run extensive experiments on
up to 128 GPUs of the ThetaGPU supercomputer to compare our approach with baselines rep-
resentative of training-from-scratch (the upper bound in terms of accuracy) and incremental
training (the lower bound in terms of training time). Results show that rehearsal-based contin-
ual learning achieves a top-5 classification accuracy close to the upper bound, while simultane-
ously exhibiting a runtime close to the lower bound.

This work is a collaboration with Bogdan Nicolae and Ian Foster from Argonne National
Laboratory (USA), held in the context of the UNIFY associate team. It has been published at
IEEE/ACM CCGrid 2024 conference (please see [22]).

A Generic Distributed Buffer Generic in Support of More Advanced Rehearsal Techniques

This contribution introduces a set of abstractions that do not impose any particular con-
straints on the data shape of training samples retained in the rehearsal buffer, allowing to ac-
commodate a large range of deep learning workloads and rehearsal strategies. Besides, we in-
troduce the concept of annotated tuples of tensors to serve representative training samples
and their associated states conveniently to the AI runtime. Such an approach (1) addresses the
need to support more rehearsal strategies (notably strategies leveraging knowledge distillation)
while (2) transparently augmentingminibatches produced by data pipelines of data-parallel CL
training instances.
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Early results of this workwere obtained during the bachelor internship ofMalvin Chevallier.

Integration with a Real-life HPC Streaming Application Benefiting fromGenerative Contin-
ual Learning

Conventional data analytics algorithms are often computationally intensive, preventing the
processing of the large amounts of data generated by scientific instruments in real time. To ad-
dress this challenge, DL models are integrated into HPC workflows to accelerate data analysis.
A commonpattern for the application ofDLmodels in this context is as follows: at the beginning
of the experiment, a classic, computationally expensive analysis is performed on the input data
sent to the HPC cluster. The output generated by this dedicated consumer workflow is served
as the ground-truth data for a DL model trained in parallel. As the experiment progresses, if
the DL model learns to predict the ground-truth data with high fidelity, one can send a copy
of it to the edge and use it instead of the classic analysis, thus improving the long-term latency
and throughput. Although this approach incurs a higher initial overhead due to the need for
additional HPC resources to train the model, it ultimately enables faster data analytics. Further-
more, model training may be continued even after the switch to the inference regime, allowing
for periodic updates to be sent to the edge device ensuring improved quality over time. For this
workflow to be effective, two key metrics are crucial: (1) the quality of the model’s predictions
and (2) the speed at which the model converges under continual learning.

We report on experiments for the case of generative learning tasks illustrated through a
real-life HPC streaming application: ptychographic image reconstruction [23]. To this end, we
showcase results obtained using the PtychoNN [24] generative DL model in the context of CL
for two different approaches for rehearsal (simple random selection of representative samples
andDark Experience Replay [25]). Results compare favorably to CL based on incremental train-
ing and to conventional reconstruction based on algorithms that are computationally intensive,
in terms of result quality in one case and in terms of time-to-solution in the other.

This work is a collaboration with Bogdan Nicolae, Tekin Bicer and Ian Foster from Argonne
National Laboratory (USA), in the context of the Joint Laboratory for Extreme Scale Computing
(JLESC) initiative. It has been published as a journal paper at FGCS - Future Generation Computer
Systems, JLESC Special Issue (please see [26]).

1.4 Publications

International Conferences

— ThomasBouvier, BogdanNicolae,HugoChaugier,AlexandruCostan, Ian Foster, Gabriel
Antoniu. Efficient Data-Parallel Continual Learning with Asynchronous Distributed Re-
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hearsal Buffers. ACM/IEEE CCGrid 2024 - The 24th IEEE/ACM international Symposium
on Cluster, Cloud and Internet Computing, May 2024, Philadelphia, United States. Cita-
tion: [22].

Journal Articles

— Thomas Bouvier, Bogdan Nicolae, Alexandru Costan, Tekin Bicer, Ian Foster, Gabriel
Antoniu. EfficientDistributedContinual Learning for SteeringExperiments inReal-Time.
FGCS - Future Generation Computer Systems, JLESC (Joint Laboratory for Extreme Scale Com-
puting) Special Issue. Citation: [26].

Posters at International Conferences

— ThomasBouvier, AlexandruCostan,GabrielAntoniu.Heterogeneity-awareDeepLearn-
ing Workload Deployments on the Computing Continuum. IPDPS 2021 - 35th IEEE In-
ternational Parallel and Distributed Processing Symposium, May 2021, Portland (virtual),
United States. Citation: [27].

Posters at National Conferences

— Thomas Bouvier, Alexandru Costan, Gabriel Antoniu. Deploying Heterogeneity-aware
Deep Learning Workloads on the Computing Continuum. BDA 2021 - 37ème Conférence
sur la Gestion de Données - Principes, Technologies et Applications, Oct 2021, Paris, France.
Citation: [28].

1.5 Software

1.5.1 Main Contributions

Neomem [29]

Scientific Description: Rehearsal-based continual learning has shown promise for address-
ing the catastrophic forgetting challenge, but research to date has not addressed training perfor-
mance and scalability. To fill this gap, we propose an approach based on a distributed rehearsal
buffer that efficiently complements data-parallel training on multiple GPUs to achieve high ac-
curacy, short runtime, and scalability. It leverages a set of buffers (local to each GPU) and uses
several asynchronous techniques for updating these local buffers in an embarrassingly parallel
fashion, all while handling the communication overheads necessary to augment input mini-
batches using unbiased, global sampling.
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Functional Description: Training neural networks with continuously generated data poses
challenges related to forgetting previously acquired knowledge, a phenomenon known as catas-
trophic forgetting. An effective solution involves replaying certain previously observed data to
maintain associated knowledge.Neomem implements this approach, aiming to achieve excellent
predictive performance at the cost of a slight increase in training time. Our approach allows for
the data-parallel utilization of dozens of GPUs, making it applicable to scientific simulations
within the high-performance computing (HPC) community.

— Link: https://github.com/thomas-bouvier/neomem
— Size and language(s): ∼2000 lines, C++ and ∼1000 lines of testing code, Python.
— License: GNU General Public License v3.0

distributed-continual-learning [30]

Scientific Description: Continual learning is the problem of learning from a non-stationary
stream of data, a fundamental issue for sustainable and efficient training of deep neural net-
works over time. Unfortunately, deep learning libraries only provide primitives for offline train-
ing, assuming that the input data is (1) independent and identically distributed (i.i.d.) and (2)
available before the training procedure. distributed-continual-learning provides a set of tools and
abstractions needed to experiment with Continual Learning.

Functional Description: distributed-continual-learning is an open source library that extends
PyTorch by providing first-class support for streams of datasets, incremental training and data
parallelism leveraging distributed rehearsal buffers. This library provides supports for a wide
range of continual learning scenarios, learning tasks (classification and generative problems)
and rehearsal-based CL strategies.

— Link: https://github.com/thomas-bouvier/distributed-continual-learning
— Size and language(s): ∼4000 lines, Python.
— License: GNU General Public License v3.0

1.5.2 Contribution to Existing Software (via Pull Requests)

Spack [31]

Scientific Description: The escalating complexity of HPC libraries poses significant chal-
lenges for users of HPC clusters. The intricate dependencies of scientific applications, which
necessitate specific versions of compilers, implementations of standards like Message Passing
Interface (MPI), platforms like Compute Unified Device Architecture (CUDA), and other de-
pendency libraries, make the adoption of a single, standardized software stack impractical. Fur-
thermore, the combinatorial size of the configuration space exacerbates the difficulty of man-
aging multiple configurations. In response to these challenges, Spack has emerged as a critical
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tool designed to automate the management of such HPC environments. By providing a flexi-
ble and extensible framework for managing software dependencies and configurations, Spack
enhances the productivity of scientific research.

Functional Description: Spack provides a recursive specification syntax to invoke paramet-
ric builds of packages and dependencies. It allows any number of build outputs to coexist on the
same system, and it ensures that installed packages can locate their dependencies regardless of
the environment. Spack leverages declarative package directives (named specs) to express all the
intersecting and disjoint compatibilities that one version of a package has with another. Spack
also leverages the concept of variants, or key-value data, which is declared in the package recipe,
and along with versions can also be configured by the end user via command-line parameters.

Our Contribution: Package recipes allow Spack to encapsulate the build logic for different
versions, compilers, build options, platforms, GPU microarchitectures, and dependency com-
binations in the same place. Essentially, a recipe translates a spec into build logic executed by
the package’s build system. Variants often correspond directly to flags piped into it. I wrote
recipes formany packageswhoseNeomem and distributed-continual-learning depend on, for them
to be installable on supercomputers using Spack. In particular: py-nvidia-dali, py-continuum,
nvtx, py-imagehash, thrift, py-datasets, fribidi, py-wandb, py-e2clab, py-codecarbon. I
also fixed issues in the following recipes: arrow, py-arrow, py-horovod, scipy, py-pytest-mock,
py-dm-tree.

— Link: https://github.com/spack/spack
— Size and language(s): the volume of my contributions to the existing codebase is ∼800

lines, Python.
— License: Apache 2.0

Horovod [32]

Scientific Description: Training deep learning models requires large amounts of compu-
tation, often provided by GPUs in specialized clusters. In order to leverage many GPUs to
speed up the training procedure, Horovod leverages the principles of MPI to efficiently dis-
tribute gradients. Some of these primitives are size, rank, local rank, allreduce, allgather,
broadcast, and alltoall. Depending on the techniques employed, this communication may
entail anywhere from negligible to significant overhead : thus, Horovod employs efficient inter-
GPU communication via ring reduction. In addition, Horovod supports the NVIDIA Collective
Communications Library (NCCL) to further optimize the communication between GPUs, en-
abling it to achieve good scaling efficiency on large-scale distributed training tasks.

Functional Description: Horovod is designed to take a single-GPU training script and run
it on multiple GPUs or even multiple machines in a data-parallel fashion, only requiring a few
lines of modification to user code. Horovod integrates seamlessly with popular deep learning
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frameworks such as TensorFlow or PyTorch, enabling efficient inter-GPU communication via
ring reduction.

Our Contribution: I fixed some bugs in the original codebase, notably related to the support
of C++17, needed to compile against PyTorch >= 2.1. Over the course of my three-year thesis,
I observed a decline in Uber’s contributions to the Horovod project. This trend continued to the
point where the project has not been maintained in the last year. The community is now using
the distributed training solutions packaged in PyTorch, which are now able to take advantage
of HPC hardware. In order to keep the same codebase for all my PhDwork, I forked the original
project to maintain it myself under the name Khorovod.

— Link: https://github.com/khorovod-ai/khorovod
— Size and language(s): ∼100 lines, Python/C++.
— License: Apache 2.0

E2Clab [33]

Scientific Description: E2Clab is a framework designed to enable researchers to replicate
application behavior in a controlled setting. Its primary goal is to analyze the end-to-end perfor-
mance of applications by linking results to specific parameter configurations. E2Clab proposes
a methodology for addressing questions such as: How can infrastructure bottlenecks be identified?
Which system parameters and infrastructure settings influence performance, and to what extent?

Functional Description: E2Clab presents high-level features that enable: (1) experiments
ensuring repeatability, replicability, and reproducibility of research; (2) mapping of applica-
tion components (edge, fog, and cloud/HPC) to the physical testbed; (3) variation & scaling of
experimental scenarios; and (4) experiment management for deployment, execution, and mon-
itoring on platforms such as Grid’5000, Chameleon, and FIT IoT LAB.

Our Contribution: I added the concept of application configurations to initiate deployments
based on custom configurations, each encapsulating specific hyperparameters. This feature al-
lows for faster experimentation by re-using already-tested configurations, and integrates seam-
lessly with distributed-continual-learning. Cherry-picked hyperparameters can be overridden via
the command line.

— Link: https://gitlab.inria.fr/E2Clab/e2clab
— Size and language(s): ∼3000 lines, Python
— License: GNU General Public License v3.0

1.6 Organization of this Dissertation

This dissertation is organized into eight chapters.
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This Chapter summarized the objectives of our research, as well as the resulting contribu-
tions and publications.

Chapter 2 presents the context of our research. It introduces the relevance of Continual
Learning to decrease the latency between the data acquisition and the availability of insights
from learning models. Then, it discusses the open challenges related to (1) learning from non-
stationary data, an issue causing a bias referred to as catastrophic forgetting in the CL com-
munity; (2) scaling DL training workloads while retaining a good statistical generalization and
resource utilization; and (3) scaling CL trainingworkloads considering the two aforementioned
constraints.

Chapter 3 defines the concept of rehearsal buffers to address catastrophic forgetting in con-
tinual learning, and introduces extensions to leverage them for data-parallel training.

In Chapter 4, we introduce key design principles such as asynchronous techniques to hide
the overhead of managing rehearsal buffers and to enable a full spectrum of combinations
for minibatch augmentations. We achieve this by sampling the rehearsal buffers of DL model
replicas residing on remote nodes using low-overhead, RDMA-aware, all-to-all communication
patterns. We implement a distributed rehearsal buffer prototype that we integrated with Py-
Torch, a popular AI runtime.

In Chapter 5, we study the trade-offs introduced by large-scale CL in terms of training time,
accuracy and memory usage using the ImageNet benchmark. We report on extensive experi-
ments using 128 GPUs of the Argonne National Laboratory’s ThetaGPU supercomputer for
the case of classification tasks. To this end, we showcase three different models (ResNet-50,
ResNet-18, GhostNet-50) and four tasks derived from the ImageNet-1K dataset. Results show
our approach can improve the top-5 evaluation accuracy from 23.1% to 80.55% compared with
incremental training, with just a small runtime increase.

In Chapter 6, we propose a generalization of rehearsal buffers capable of storing hetero-
geneous data, and serve it in the form of annotated tuples of tensors. This extension allows
to expose representative samples alongside to their associated states to the AI runtime during
training, which addresses the need to support more advanced rehearsal strategies. We then
discuss how the distributed rehearsal buffer can be used to enable CL tasks using generative
models on multiple GPUs.

In Chapter 7, we motivate the benefits of continual learning for scientific applications lever-
aging streams of data, illustrating them in the context of ptychographic reconstruction [23]
with generative DL models. We report on experiments showcasing results obtained using the
PtychoNN [24] model for two different types of rehearsal (simple random selection and Dark
Experience Replay), which compare favorably to CL based on incremental training and to tra-
ditional reconstruction based on algorithms that are computationally intensive.

Finally, Chapter 8 concludes and presents the prospects opened by our contributions.
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During the past decade, Machine Learning (ML) supported the shift from rule-based sys-
tems towards statistical models. Deep Neural Networks (DNNs) revolutionized how we ad-
dress problems in a wide range of applications by extracting patterns from complex yet labeled
datasets. In the same way that more-powerful computers made it possible to design networks
with vastlymore neurons, ever-growing volumes of data act as a driving force for advancements
in this field. Bigger models and larger datasets demand for parallel & distributed strategies to
leverage multiple compute nodes.

Most existing supervised learning algorithms operate under the assumptions that (1) train-
ing data samples are independent and identically distributed (i.i.d.), a common assumption
in ML; and (2) available before the training process. However, these constraints exclude many
real-life scenarios where the aforementioned datasets are replaced by high volume, high veloc-
ity data streams generated over time by distributed (sometimes geographically) devices. It is
unfeasible to keep training the models in an offline fashion from scratch every time new data
arrives, as this would lead to prohibitive time and/or resource constraints. Also, typical DNNs
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suffer from catastrophic forgetting in this context, a phenomenon causing them to reinforce new
patterns at the expense of previously acquired knowledge (i.e., a bias towards new samples).
The problem of Continual Learning (CL) remains an open research question.

In this dissertation, we are interested in instantiating 1) parallel and distributedDeep Learn-
ing and 2) Continual Learning together.

This chapter reviews the concepts used in the rest of the dissertation. First, we describe how
the ML and High-Performance Computing (HPC) ecosystems are converging, and identify the
general trends arising from this. Next, we introduce important concepts about DNNs. We then
focus on the application of deep learning to data whose distribution evolves continuously over
time, a typical case when ingesting data streams. Next, we explore parallelization strategies
applied to usual deep learningworkloads. Finally,wediscuss about the open challenges brought
by CL methods when leveraging of data parallelization across nodes, which is one of the main
techniques to achieve training scalability on HPC systems.

2.1 Towards Integrated HPC/ML Ecosystems

Historically, the fields of HPC andML have evolved in isolation. For decades, the HPC com-
munity has focused on performance optimization, measurement, and reproducibility, empha-
sizing on both results and performance. On the other hand, the ML community did not pri-
oritize performance, focusing instead on improving the accuracy of models. However, as ML
models become more complex and are deployed in time-sensitive applications, the need for
performance optimization is becoming more important. This has led to a growing interest in
the intersection of HPC and ML, leading to the emergence of machine learning tracks at tradi-
tional HPC conferences and systems tracks at traditional ML conferences.

2.1.1 Definitions and Landscape

Modern BigData analytics in science relies on three fundamental components:ML for adapt-
able analysis, HPC formanaging large volumes of data and/or executing computationally inten-
sive simulations, and workflow technologies for ensuring reproducibility across experiments.
Despite the importance of these components, they have traditionally been studied separately, re-
sulting in integration challenges. However, there is a growing trend towards convergence, with
the interplay between HPC and ML driving advancements in both fields [35]. The integration
of ML into scientific workflows introduces new requirements for HPC architectures, such as
support for GPUs (Graphical Processing Units) and low-precision floating-point math.

A possible definition of an HPC/ML integrated workflow is a structured sequence of au-
tomated tasks that are executed in a specific order to achieve a particular goal, with at least
one HPC task (i.e., workflow management, data preprocessing and post-processing, simula-
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tion, visualization), and one ML task (i.e., surrogate modeling, hyperparameter tuning, model
selection). It typically involves the use of HPC systems to train and deploy ML models, even
if the task may be limited to running inferences on an already-trained model. As introduced
in [36, 37], ML and HPC can be coupled in various modes:

— ML in HPC denotes scenarios where an ML model replaces a computationally intensive
HPC component or the entire HPC simulationwithin aworkflow. In this setting, only the
ML inference phase of the model is integrated into the workflow, enabling faster insights
by substituting costly simulations. However, scientists must continuously asses the ML
model’s performance to ensure its predictions remain accurate. If the model’s accuracy
degrades significantly, it should be retrained in an offline fashion, separately from the
workflow.

— ML out HPC refers to scenarios where ML is used to steer HPC components or generate
new data in parallel. This approach is getting common in modern scientific applications
that require simultaneous training and inferences on ML models adapting to highly dy-
namic patterns. Rapid updates to the ML model in response to new training data are
crucial in such applications. The ML model thus resides outside the primary HPC simu-
lation but is typically trained in parallel, allowing for computational resource savings if
the cost of training and inferences is lower than traditional computations.

— ML for HPC describes scenarios where the ML model is tightly integrated with the pri-
mary HPC task to enable system-wide optimizations. For instance, ML models can op-
timize the performance of runtime systems, resource managers, workflow managers, or
even schedulers. In this context, the HPC component’s results are used to train the ML
component in real-time, fostering a tightly-coupled relationship between the two.

As noted by the same authors [37], an increasing number of scientific applications rely on
dynamic, real-time interactions that require to accommodate data acquired in real-time. Such
interactions open new perspectives for real-time steering of computations, reduced latency be-
tween data acquisition and generation of subsequent insights, dynamic workflow reconfigura-
tion, or re-calibration of parameters at runtime. This marks a paradigm shift away from con-
ventional batch-oriented systems, which is reflected in the way DL models are trained. When
learning in an offline fashion (as typically done), the input data is a fixed dataset with the as-
sumption that it encompasses all potential variations of the training data. However, learning
from data generated continuously requires seamless adaptation to distribution shifts, as the
model’s performance can degrade significantly if it is not able to adjust to the changing data
distribution in real-time. Distribution shifts occur when the underlying probability distribution
of the training data changes, often due to factors such as non-stationarity, concept drift [38],
or covariate shift [39]. These changes can render the original training data less representative
of the current data distribution, making the model’s assumptions and learned representations
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outdated or even invalid. Therefore, it is crucial to have mechanisms in place that can detect
and adapt to such shifts in a timely and efficient manner, in order to ensure that the model re-
mains accurate and effective over time. We refer to such solutions as CL. This real-time learning
paradigm enables the incorporation of new patterns and trends over time, ensuring that the
model remains accurate at any time during the training.

Applications coupling HPC and DL do not necessarily execute all of their components on
HPC systems. In fact, the landscape is changing quickly, with large centralized datasets being
replaced by high-volume, high-speed data streams. In some cases, these streams originate from
many geographically dispersed, loosely interconnected devices, such asmobile phones, sensors,
or industrial machines. On the other hand, deep learning typically involves centralizing the data
and processing it in parallel within high-performance clusters, calling for a hybrid execution
infrastructure. This assembly of resource-constrained devices producing streams of input data
at the edge, and Cloud or HPC systems executing DL-powered workloads providing insights
about future system states, is known as the Computing Continuum [40].

2.1.2 Patterns for Integration of Instruments and Computing

The escalating complexity of scientific problems poses significant challenges for computer
scientists. As noted in [41], the advent of instruments such as synchrotron light sources [42],
telescopes [43], or microscopes [44] provide new powerful means to conduct research. By cap-
turing data at an unprecedented level of detail, these tools allow researchers to gain novel in-
sights into the behavior and properties of materials, biological systems, and other complex phe-
nomena. However, the data volume generated by these instruments is massive, and powerful
HPC clusters are needed to process it. A notable example is the Advanced Photon Source (APS)
located at Argonne National Laboratory, which generates experimental data at a rate on the or-
der of tens of Gbps [21] during high-fidelity X-ray imaging at microscopic level. At such gener-
ation rates, the experimental data cannot be sent fast enough over WAN (Wide Area Network)
links to anHPCmachine, prompting the need for pre-processing near the data acquisition in or-
der to reduce its size. This can be achieved using compression [45], partial discarding, or feature
detection via light computational stages (e.g., detecting diffraction peaks in X-ray imaging [46]).
Unfortunately, such data reduction techniques imposed by limited computational capabilities
of the edge infrastructure reduce the quality of end results.

To address this challenge, an emerging approach leverages previously collected experimen-
tal data (from the ongoing acquisition) to train a DL model in parallel on HPC clusters, which
is then deployed to run compute-efficient live inferences at the edge. A common pattern for
applying DL models in this context involves performing a classic, computationally expensive
processing on the data stream sent to the HPC cluster at the beginning of the data acquisition.
The output generated by this dedicated consumer workflow serves as ground-truth data for
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a DL model trained in parallel. As the experiment progresses, if the DL model learns to pre-
dict ground-truth data with high fidelity, it can be deployed to the edge to replace conventional
processing, thereby reducing the latency in generating insights. Although this approach incurs
a higher initial overhead due to the need for additional HPC resources to train the model, it
ultimately enables faster data analytics, with methods based on DL models achieving up to
1000-fold [47] speedups in X-ray imaging.

Furthermore, the DL training procedure might be continued even after switching to the in-
ference regime, allowing for periodic updates of the model deployed at the edge to improve
long-term quality of end results. Besides saving HPC resources, this approach can eventually
achieve the quality obtained with the replaced algorithm in the most favorable cases. This ne-
cessitates efficient real-time updates of the DLmodel via continual learning, enabling themodel
to adapt to changing experimental conditions. Finally, such updates can be used to adjust the
course of the experiment, such as steering it in a different direction, or calibrating the instru-
ment through a feedback loop.

2.2 Continual Learning

Supervised learning is a fundamental paradigm in machine learning, underpinning a diverse
array of big data applications. This paradigm involves the estimation of amapping function that
relates input variables to output variables, guided by labeled examples to inform the learning
procedure. Deep learning is a subfield of machine learning that is closely related to supervised
learning. In fact, many DL models are trained using supervised learning techniques. However,
in recent years, the focus has gradually shifted towards a more dynamic and adaptive learning
paradigm, known as continual learning. Unlike deep learning, which typically assumes a static
dataset, continual learning enablesmodels to learn from a continuous stream of data, accommo-
dating new information while retaining previously acquired knowledge. This paradigm aligns
more closely with real-world scenarios where data is often encountered sequentially and may
exhibit evolving patterns over time. Thus, continual learning can be positioned as an exten-
sion of supervised learning, designed to address the challenges of non-stationary and dynamic
learning environments.

2.2.1 Supervised Learning

In the context of supervised learning, a deep learning (DL) model can be used to learn the
mapping function from input variables to output variables. Given a dataset D, a probability
distribution D over the training data D and a random variable z that takes on values in the
space of all possible input-output pairs (x, y), the training of a DL model is an iterative process
that progressively updates its parameters w in order to predict the ground-truth value y given
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Table 2.1 – Supervised Learning notation

D dataset
D data probability distribution
z random variable
(x, y) input/label pair
w ∈ H model parameters
w

(k)
i model parameters, i denotes parameters of operator i at iteration k

fw(z) model function (predictor)
hw(z) activations (pre-softmax responses i.e., logits)
L loss function
ℓ(w, z) per-sample loss function
∇ℓ(w, z) gradient of ℓ
u(w, g) parameter update rule, function of parameters w and loss gradient g
m⃗ minibatch
b default minibatch size
η learning rate
I number of training iterations (steps)

an input x. The ground truth refers to the actual or true value (e.g., a class label or id) of the
data that the DL model is trained on. More formally, it can be cast as an optimization problem:
we want to find w∗ that minimizes the loss function L:

w∗ = argmin
w∈H

L = argmin
w∈H

E(x,y)∼D[ℓ(fw(x), y)] (2.1)

where H is the hypothesis set containing all possible combinations of parameters w, fw(z)
is the prediction of the DL model with w fixed, ℓ is the loss function that estimates the error
between the prediction and the ground-truth label for a single training sample, and E is the
overall error for all pairs z = (x, y).

2.2.2 Deep Neural Networks

At their core, Deep Neural Networks (DNNs) are structured layers of interconnected nodes
inspired by the human brain, capable of learning intricate patterns and representations from
labeled data. We now describe their building blocks by matching the concepts of supervised
learning to their terminology.

Feed-forward Operator In Figure 2.1, we illustrate a DNN single operator (also referred to as
fully connected layer) where two nodes (also referred to as neurons) are represented in yellow.
After establishing an input layer that we represent in blue, composed of input data x, a matrix
of weights w is allocated to the connections (also referred to as synapses) between layers. These
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Figure 2.1 – The single operator, also called fully connected layer, is represented in yellow. The
input layer is represented in blue. Figure borrowed from [8].

weights assess the importance of each subsequent neuron, with greater weights having a more
substantial impact on the neuron’s output than other inputs. Every single neuron can be con-
sidered as a distinct linear regression model. In this model, each input xi is multiplied by its
respective weight wi,j . Additionally, a bias bij is assigned to each neuron and is added to the
outcome:

m∑
j=1

n∑
i=1

wi,jxi + bij =
m∑

j=1
(w1,jx1 + w2,jx2 + ... + wn,jxn + bij) (2.2)

where m is the number of neurons in the layer, n the number of input features, xi is the i-th
input feature, wi,j is the weight associated with the i-th input feature and the j-th neuron, and
bij is the bias term for the j-th neuron.

The output is then processed through an activation function, which adds non-linearity to
the network and determines the final output of a neuron. If this output is greater than a prede-
termined threshold, it triggers (or activates) the neuron, transmitting information to the subse-
quent layer in the network. Using the Heaviside step function as a naive activation function σ,
each neuron can be considered as a binary classifier with an output given by:

output = σ(x) =

1, if
∑m

j=1
∑n

i=1 wi,jxi + bij ≥ 0

0, if
∑m

j=1
∑n

i=1 wi,jxi + bij < 0
(2.3)

In practice, Rectified Linear Units (ReLU), sigmoid, softmax, hyperbolic tangents or vari-
ants [48] are used as activation functions (also referred to as axons). Consequently, the output
of one neuron serves as the input for the next neuron in the subsequent operator (layer). This
method of transferring data from one operator to the next via weighted connections character-
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izes feed-forward neural networks.

Stochastic Gradient Descent (SGD) To solve the optimization problem formulated in Equa-
tion (2.1), the most commonly used technique is stochastic gradient descent (SGD) [49, 50,
51]. Given an initial point w(0) ∈ H, SGD attempts to decrease the objective J by optimizing
parameters defined by the sequence {w(k)}Ik=0 as detailed in Algorithm 1.
Algorithm 1: Stochastic gradient descent (SGD)

1 for k = 0 to I // Optimize for I iterations

2 do
3 (x, y)← Sample random sample from D // Obtain one sample from dataset D

4 g ← ∇ℓ(fw(k)(x), y) // Compute stochastic gradient

5 w(k+1) ← w(k) + uSGD(g) // Update parameters

Variable g forms an unbiased estimate of the gradient of the objective J that we call a stochas-
tic gradient. The SGD algorithm updates the parameters for each training sample separately, re-
sulting in frequent updates with high variability. This high variance can cause the convergence
to be noisy.

Variants of SGD commonly used with neural networks include SGD with momentum [52,
51, 53], RMSProp [54], AdaGrad [55] and Adam [56]. All of these optimization procedures, or
optimizers, interact with the training samples only by repeatedly computing stochastic gradi-
ents (line 4).

Function u (line 5) is responsible for updating the model parameters. The basic SGD update
rule is uSGD(g) = −η × g, where η represents the learning rate. The learning rate modulates the
amplitude of the stochastic gradient, controlling how much training iteration t affects the next
model update w(t+1). Scientists typically set it to a large value at the beginning of the training,
and then decay it multiple times during the process. This is empirically observed to help both
optimization and generalization. As noted in [57], common beliefs in how learning rate decay
works come from the optimization analysis of gradient descent: 1) an initially large learning
rate accelerates training and helps the network escape spurious local minima, and 2) decaying
the learning rate helps the network converge to a local minimum faster.

Backpropagation A deep neural network is constructed as a composition of operators
LG (fwG , . . . , L2 (fw2 , L1 (fw1(x)))) for which partial derivatives are easily computed, where

each function Ll is an operator and each tensor wl represents operator l’s weights. The chain
rule is a fundamental concept in calculus that allows to compute the derivative of a composite
function. In the context of deep learning, the chain rule is used to compute the gradients of
the loss function with respect to the model’s parameters w. Starting with an initial w(0) chosen
randomly, a forward pass computes the intermediate predictions for each training sample in the
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chain of composed operators to obtain a loss value ℓ(fw(x), y) computed by a loss function ℓ.
Then, a backward pass is performed, where the gradients of the loss function with respect to
the model’s parameters are computed using the chain rule. Specifically, the gradient of the loss
function with respect to the parameters of the last operator LG is computed first, and then the
gradients of the previous operators are computed recursively, until the gradients of the first
operator L1 are obtained. Information is thus propagated through the network via intermediate
gradients ∇wl

= dL
dwl

(w.r.t. weights wl) and −∇x (w.r.t. input data x). Finally, these gradients
are used to update the model’s parameters w using an optimization algorithm with an update
proportional to the partial derivative of the loss value. This process referred to as backpropagation
is repeated iteratively in order to come closer to a minimum of E defined in Equation 2.1, until
some termination criteria are satisfied.

Backpropagation applied to feed-forward networks initially encountered little success for
a reason identified as the vanishing gradient problem [58]. This issue occurs when the compo-
sition of operators lengthens, causing the intermediate gradients magnitude to decrease (or
grow uncontrollably), slowing the training process [59] as a result. In the worst case, this may
completely stop the DNN from further training.

DNNTraining Procedure Reusing the notation introduced in [60], the procedure of training a
DNNusingAlgorithm 1 can be divided into threemain stages: (IO) loading and pre-processing
a sample from the dataset; (FB) performing a forward pass where the sample passes through
the DNN, followed by a backward phase (backpropagation) to compute the gradient encod-
ing how sensitive the loss function ℓ is to each parameter w.r.t. the current sample; and (WU)
updating the DNN parameters (weights) according to the gradient. In practice, a typical op-
timization taking advantage of the highly parallel architectures of modern accelerators (e.g.,
GPUs) is to process the gradients for small, uniformly random subsets of training samples called
minibatches. Step (FB) is then computed w.r.t. the minibatch, with each minibatch containing b

samples. The optimization procedure as implemented by theminibatch stochastic gradient descent
algorithm is described in Algorithm 2.
Algorithm 2:Minibatch stochastic gradient descent (SGD)

1 for k = 0 to |D|
b do

2 m⃗← sample(D, b) // Obtain a minibatch from dataset D

3 gm ← 1
b

∑
(x,y)∈m⃗∇ℓ(fw(k)(x), y) // Compute gradient using backpropagation

4 w(k+1) ← w(k) + uGD(gm) // Weight update rule

Minibatch SGD strikes a balance between stochastic gradient descent (SGD), which processes
one training sample per iteration (as detailed in Section 2.2.2) resulting in as many training iter-
ations as there are samples, and batch gradient descent (GD)which processes all training samples
at once, leading to a single occurrence of the (IO), (FB), and (WU) steps described above.While
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GD computes a single, comprehensive gradient over the entire dataset, SGD performs frequent
updates at a lower computational cost, under the assumption that these noisy gradients still
roughly point in the correct direction. The variable gm represents a stochastic gradient of the
objective J computed using minibatch m⃗ of input data that is assumed to be independently and
identically distributed (i.i.d.). This can be expressed as:

gm(w(k), m⃗) = 1
b

∑
(x,y)∈m⃗

∇ℓ(fw(k)(x), y) (2.4)

By determining how many samples are processed in one training iteration, the minibatch
size b affects the algorithm’s convergence [61]. An epoch refers to one complete pass through
the entire training dataset, as depicted in Algorithm 2. The number of iterations (each involving
the (IO), (FB), and (WU) steps mentioned above) per epoch is equal to the number of samples
divided by theminibatch size b. Minibatches are typically sampledwith replacement, following
the practice of cycling through permutations of the dataset at each epoch. Sampling without
replacement was proven [62] to provide similar convergence guarantees.

DNN Notation In the case of a plain DNN, the input data is typically flattened into a one-
dimensional vector before being fed into the network. When a minibatch of color images serves
as input for a DNN, it is represented as a four-dimensional tensor sized b× C ×H ×W . Here,
each image is characterized by C channels (e.g., which might be RGB components with C = 3),
with each of these channels spanning a grid of H ×W pixels. In a DNN presenting G layers, a
fully connected layer as in Figure 2.1 operates on the following tensors:

— The input of layer l with a minibatch containing b samples, each sample include Cl chan-
nels, each channel is a tuple of d-dimension: xl[b, Cl, Xd

l ]. When working with images,
we replace Xd

l with [Wl, Hl] i.e., xl[b, Cl, Wl ×Hl]. To simplify, we omit the layer index l

and the dimension d e.g., x[b, C, X].
— The output (activations) of layer lwith b samples andClout output channels, each of shape

yl[b, Clout , Y d
l ].

— The weights wl[Cl, Clout ].
— The bias bil[Clout ].
Layer l is defined on the group of neurons xl by yl,∗ = σ(wxl,∗ + bi), where w is the weight

matrix sized Cl × Clout and bil is a per-layer trainable bias vector sized Clout .

Convolutional Neural Networks (CNNs) When working with high-dimensional data such
as color images, flattening the data into a one-dimensional vector to be fed into a DNN can lead
to a large number of input features and a correspondingly large number of network parame-
ters. This can lead to two issues: (1) the risk of overfitting, which occurs when a model is too
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complex and fits the training data too closely, capturing noise and failing to generalize to new,
unseen data and (2) the network can become more computationally expensive to train. Feature
engineering is the process of manually transforming raw data into a format that is more easily
operable by neural networks, which requires significant effort and domain expertise to design
relevant features for the task at hand.

ConvolutionalNeuralNetworks (CNNs)provide a solution to the challenges of image recog-
nition by automatically extracting meaningful features directly from the raw input data during
the training procedure. This ability to learn feature representations from data makes CNNs
well-suited for image recognition. As the input image propagates through the DNN, convolu-
tional operators reduce the spatial dimensions (width and height) of the image, as well as the
number of feature maps via filters (also referred to as kernels). Each feature map is a spatial rep-
resentation of the input data, where the values in themap correspond to the presence of specific
features or patterns in the input data. The number of output filters F determines the number
of feature maps produced by the layer, and each filter is responsible for detecting a specific pat-
tern or feature in the input data. This dimensionality reduction achieved by CNNs has two key
benefits: (1) it enabled the capture of hierarchical patterns within the data, and (2) it mitigates
the vanishing gradients issue by optimizing over fewer connections [63].

In the context of CNNs, input channels C refer to the number of input data streams that
are processed by a layer. For example, the input channels might correspond to the RGB color
channels of an input image. Each input channel is processed independently by the layer, and
the outputs are combined to produce the final output. To formalize this concept, consider a
convolutional operator that takes a 4-dimensional minibatch of images as input. Each image in
theminibatch is represented as a 3D tensorxi, which is convolvedwithClout filters of sizeCl×Kd

l .
Here, Cl represents the number of input channels, Kl represents the spatial dimensions of the
filter, and d represents the number of spatial dimensions in the tuple (e.g., width and height).
We reuse and adapt the notation introduced in [60]:

— The parameters wl[Cl, Fl, Kd
l ] with Fl filters. Each filter sized Kd

l has Cl channels. To
simplify, we omit the kernel size e.g., wl[Cl, Fl].

— The output (activations) of layer l with b samples and Fl output filters yl[b, Fl, Y d
l ]. Each

output filter is sized Y d
l .

— The bias bil[Fl].
— The input gradients dL

dxl
[b, Cl, Xd

l ].
— The parameter gradients dL

dwl
[Cl, Fl, Kd

l ].
— The activation gradients dL

dyl
[b, Fl, Y d

l ].

To set the scene for future sections, we use the notation from [60] to describe steps (IO),
(FB) and (WU) in further detail when performed in the context of CNNs. The following steps
are performed for each operator l:
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Figure 2.2 – A DNN is composed of many operators. Figure borrowed from [8].

(IO) x[b, C, X]← IO(D, b) in the first layer (2.5)

(FB) y[b, F, Y ]← FW (x[b, C, X], w[C, F, K]) (2.6)

(FB) dL

dx
[b, C, X]← BWdata

(
dL

dy
[b, F, Y ], w[C, F, K]

)
(2.7)

(FB) dL

dw
[C, F, K]← BWparameters

(
dL

dy
[b, F, Y ], x[b, C, X]

)
(2.8)

Parameters of all layers are updated at the end of every training iteration using the learning
rate α:

(WU) w[C, F, K]←WU

(
dL

dw
[C, F, K], α

)
(2.9)

Another important concept ofCNNs is pooling, which is a formof non-linear down-sampling.
There are several non-linear functions to implement pooling, where max pooling is the most
common. The equations above apply.

To increase the likelihood of the cheaper minibatch gradients pointing in the same direction,
this training procedure revisits dataset D repeatedly over multiple epochs. In practice, the train-
ing phase typically consists of 40-300 epochs. Each of these epochs represents a pass over the
entire training data, which in turn is randomly shuffled to guarantee the training samples are
seen in a different order at different epochs.
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2.2.3 Catastrophic Forgetting

Although efficient on static training data, optimization algorithms like SGD and minibatch
GD do not perform well when training data arrives continuously over time. One approach to
continual learning is to train the DL model incrementally (i.e., the training proceeds with rel-
atively inexpensive updates to the model’s parameters based on just the new data samples). If
data increments are small, such an approach achieves high performance and low resource uti-
lization. Unfortunately, it can also cause the accuracy of the DLmodel to deteriorate quickly—a
phenomenon known as catastrophic forgetting [14]. This naive approach to continual learning
introduces a bias in favor of new samples, effectively causing the model to reinforce recent pat-
terns at the expense of previously acquired knowledge. Specifically, if a new training dataset D′

is available in addition to D, but we sample new minibatches only from D′, then our DL model
will drift in the direction of minimizingED′ (the overall error corresponding to D′), which may
no longer be representative of ED+D′ . Larger differences between the distributions of the old
vs. new training data exacerbates the bias, often to the point where a single pass over the new
training data is enough to erase most, if not all, of the patterns learned previously.

In the context of continual learning, we call each new training dataset D′ a new task (some-
times referred to as data increments). Given T tasks and their probability distributions of data
Dt, the optimization problem defined in Equation 2.1 becomes:

w∗ = argmin
w∈H

1
T

T∑
t=1
Lt, where Lt ≜ E(x,y)∼Dt

[ℓ(fw(x), y)] (2.10)

Catastrophic forgetting echoes the more general plasticity-stability dilemma [64], where (1)
plasticity refers to the ability of the model to learn concepts in the current task, and (2) stability
refers to its ability to preserve knowledge acquired in previous tasks.

In continual learning, the model is trained on a sequence of tasks T = (T1, . . . , Tt), where
Ti = {(xi, yi)} denotes the input-output tuples attached to task Ti. The goal is to perform se-
quential training while preserving knowledge gained in previous tasks. Authors in [65] dif-
ferentiate three CL scenarios “based on whether, at test time, task identity is provided and, if
not, whether task identity must be inferred”. We illustrate them in Figure 2.3 using the split-
MNIST [66] dataset as example.

Task-incremental Scenario Apopular CL setting is the task-incremental (“Task-IL”) scenario,
in which the output space Y is fixed (e.g., a fixed number of classes). In this setting, the model
is aware of the task identity when running inferences (e.g., the task id is provided or obvious to
infer). This configuration makes the mitigation of catastrophic forgetting trivial, as the model
can use a specific component devised for the task at hand. A high-level example would be to
imagine tasks corresponding to learning musical instruments. At inference time, to recognize
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Figure 2.3 – The split-MNIST dataset according to each of the three continual learning scenarios.
With Task-IL, the choice for themodel is between two digits from a given task (e.g., zero or one).
With Domain-IL, the choice is still between two options (e.g., even or odd), but the problem
is more difficult as task identity is not provided at inference time. With Class-IL, the model
must choose between all ten digits, and the output space is growing as new tasks are observed.
Borrowed from [67], where it was modified from [68].

a chord being played, the model is first given the instrument that produced the sound. Conse-
quently, it can activate the relevant task-specific component to use the right knowledge. For this
reason, the task-incremental scenario is sometimes referred to as multi-headed.

Domain-incremental Scenario Domain-incremental (“Domain-IL”) learning refers to a sce-
nario where the underlying problem structure remains the same, but the context varies over
time, resulting in domain shifts. As with Task-IL, the output space Y is fixed. However, it is not
provided which domain a sample belongs to at inference time. As a result, using a model with
components specific to each domain is not feasible in this setting. To return to the illustration
using musical instruments, a model would have to recognize the chord without being aware of
which instrument produced it. The model may or may not first infer the domain.

Class-incremental Scenario A more complex CL problem is the class-incremental (“Class-
IL”) scenario, which is the problem of incrementally learning to discriminate between an in-
creasing number of classes. In this setting, the output space T × Y changes from one task to
another (e.g., new images of a new classes not encountered in previous tasks). In other words,
the model is expected to discriminate between classes originating from different tasks, unlike
previous scenarios, where the model had to discriminate within a task or domain. To take the
example of musical instruments again, a model must recognize the musical note and also the
musical instrument that emitted it. New instruments are learned over time. A challenging as-
pect of Class-IL, sometimes referred to as single-headed, is to discriminate between classes that
were not observed together.
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2.2.4 Addressing Catastrophic Forgetting

In this section, we focus on approaches that have been proposed in the literature to address
the catastrophic forgetting problem. We rely on the categorization carried out in [67].

Experience Replay Experience Replay, that we refer to as rehearsal in this dissertation, is a sim-
ple continual learning technique in which themodel knowledge is reinforced by replaying sam-
ples from previous tasks [69, 34]. This idea stems from neuroscience, where the re-occurrence
of neuronal activity patterns that represent previous experiences is believed to play a crucial
role in the consolidation of new memories in the brain [70, 71].

In practice, this approach selectively stores previously encountered raw data samples, called
representatives (sometimes referred to as exemplars), into a rehearsal buffer denoted B. Represen-
tatives are then sampled back from this buffer to augment the minibatches of new training tasks.
Such augmentations involve appending a fixed number of representatives to each minibatch
corresponding to the most recent training data, in order to obtain a large minibatch that mixes
new and old training samples. When learning the current task tc, one seek to minimize the fol-
lowing objective preserving the knowledge acquired on previous tasks {1, . . . , tc − 1}, tc ≤ T :

Ltc + E(x,y)∼B[ℓ(fw(x), y)] (2.11)

The advantage of the Experience Replay approach is that it can mitigate catastrophic forget-
ting transparently [72, 73], without the need to change existing model architectures or train-
ing methods. This claim is supported by studies that not only emphasize its effectiveness com-
pared to alternative methods [74], but also propose diverse extensions to enhance its perfor-
mance [75]. Most of these optimizations are related to how representatives are selected and
stored into the rehearsal buffer. As such, the sampling strategies for representatives might rely
on their associated gradients [76], training loss [75], as well as alternative sampling policies
from the buffer [77].

Another approach to rehearsal, sometimes referred to as pseudo-rehearsal, learns the input
distribution using a generative model. Generative replay leverages DLmodels such as GANs to
construct synthetic data that mimics past training samples [78, 79]. The effectiveness of this ap-
proach highly depends on the capability of generativemodels to dealwith complex datasets [80].
This limitation might be alleviated by replaying latent features instead of raw training sam-
ples [81], although this approach requires a pretraining phase to achieve satisfactory results.
Besides, generative replay requires higher computational overheads compared with sampling.

A limitation of rehearsal, as noted by authors in [82], is its tendency to prevent the model
from exploring beyond the first encountered low-loss region. Their observations indicate that
this behavior can lead to overfitting,where themodel becomes too specialized towards the edges
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of the rehearsal buffer’s low-loss region, ultimately impairing its ability to generalize effectively.
We believe this effect can be mitigated by increasing the buffer capacity. Another concern with
rehearsal comes from the additional computational cost, proportional to the number of repre-
sentatives to be replayed during the training procedure. Fortunately, research suggests that it is
not essential to replay representatives from all previous tasks each time a new task is learned.
As suggested in [83], acquiring new knowledge is generally more challenging than preserving
it once it has been learned. Consequently, replaying subsets of representatives often suffices to
limit forgetting.

Regularization Parameter regularization applies constraints to the parameter update rule to
prevent forgetting knowledge acquired onprevious tasks.Many authors propose addingpenalty
terms to the loss function in order to adjust the learning objective [84, 66, 85], mitigating large
changes to parameters that would degrade the performance on previous tasks. A crucial aspect
of this approach is to estimate how important parameters are for previously learned tasks. The
Fisher information matrix can provide such an estimate [84]. Overall, most methods based on
parameter regularization can not learn a correct solution in class-incremental scenarios (i.e.,
without knowing the task identifier at inference [86, 87]).

Functional regularization is a similar approach, with large changes to parameters being pre-
vented with respect to a set of specific inputs called anchors. For instance, the Hindsight Anchor
Learning (HAL) [88] algorithm complements Experience Replay with regularization to align
the model responses with such data points encoding classes encountered in previous tasks.
This approach bears similarity with meta-learning approaches [89], which aim to maximize
transfer learning capabilities. Other studies leverage the knowledge distillation loss [90] to regu-
larize over the feature representations of previous tasks. However, this approach tends to lead
to a representation drift [15] when the number of tasks is large (i.e., as parameters adapt to new
tasks the values that other parameters are constrained towards become obsolete). Both Dark
Experience Replay (DER) and DER++ algorithms [25] demonstrate that injecting a distillation
term (obtained from activations of a previous version of the model) into the loss calculation
instead of replaying past representatives (or doing both) yields to a better achieved accuracy
than rehearsal alone. A close proposal is Function Distance Regularization (FDR) [91], with the
limitation of storing activations at task boundaries only. Besides, X-DER [92] takes an extra step
over previous methods by preparing future classification heads to accommodate future classes.

As discussed in [67], the line between rehearsal and functional regularization is blur, as the
latter can sometimes be seen as a variant of the former. In this light, the replayed data consists
in past anchors labeled with the corresponding predictions, as made by a previous version of
the model [78]. In the case of regularization, inputs and associated predictions can be stored in
an external rehearsal buffer, but also internally in the model itself (or in a model checkpoint).
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Optimization-based strategies Instead of modifying the loss function, optimization-based
strategies leverage novel optimization routines more suitable to continual learning scenarios
instead of the SGD variants mentioned in Section 2.2.2. For instance, some studies explore the
use of gradient projection [93] to restrict parameter updates to directions that avoid erasing
knowledge from previous tasks. Some studies explore the use of adaptive learning rates, with
modulation depending on the importance of the parameters for the previous tasks [94, 95].
Another strategy is to control the optimization trajectory is through probabilistic parameter up-
dates [96].

Template-based strategies Another approach to continual learning is template-based classifi-
cation. In this approach, a class template is learned for each class, and classification is performed
based onwhich class template is closest for the sample to be classified. Templates can be defined
in an embedding space [97] using an embedding model to convert training samples. When em-
beddings need to be updated as new data arrives, multiple embeddings can be stored per class,
as proposed in iCaRL [18]. Generative classification [98] is a similar strategy inwhich templates
are learned by generative models. However, since such models are often limited by their ability
to learn complex datasets, an alternative is to train an energy-based model and compute energy
values per class [99].

2.3 Parallel and Distributed Deep Learning

If training a model on a single process is too slow or if the model’s weights exceed the mem-
ory capacity of a single process, transitioning to multiple distributed compute processes be-
comes necessary. Beforemaking this transition, some techniques should be explored for efficient
training on a single GPU, as they are universally applicable to model training on any number of
GPUs. Transitioning from a single GPU to many GPUs requires introducing some parallelism,
as the workload must be distributed across the compute resources. The procedure of training a
DNN in a distributed fashion can be divided into four main stages. Building upon the notation
introduced in Section 5: (IO) data loading and pre-processing, (FB) a forward phase where
training samples pass through the DNN, followed by a backward phase (backpropagation) to
compute the corresponding gradients, (GE) the gradient exchange across distributed training
processes and (WU) updating the DNN parameters.

2.3.1 Single/Multi Machine Parallelism

Techniques for implementing parallel learning algorithms range from simple threaded im-
plementations to using OpenMP [100] on individual machines, leveraging shared memory for
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efficient parallelization. Accelerators such as GPUs or FPGAs (Field-Programmable Gate Ar-
rays) typically require programming with specialized languages like CUDA, OpenCL, or hard-
ware design languages. However many applications require the same low level mathematical
routines. Libraries dedicated to accelerating these common routines allow to easilymake full use
of the available hardware without requiring low level knowledge of the hardware themselves.
Such libraries are often provided by manufacturers for specific platforms like cuDNN [101]
(NVIDIA), or MKL-DNN (Intel). SYCL-DNN is another hardware-agnostic library dedicated
to providing accelerated routines for neural network operations.

In scenarios where multiple machines with distributed memory are involved, one can se-
lect between communication mechanisms like TCP/IP or RDMA (Remote Direct Memory Ac-
cess [102]). This technology adds hardware support to allow a process hosted on one compute
node to access thememory of another process hosted on a different compute nodes over the net-
work without involving the CPU. Using this approach, the latency of small accesses can be sig-
nificantly improved, which enables our approach to be efficient. Distributed memory machines
also allow for the use of more convenient libraries like the Message Passing Interface (MPI)
or Apache Spark [103]. MPI leverages collective communication primitives, such as broadcast,
reduce, scatter, reduce_scatter, gather, and allreduce, to enable efficient communication
and synchronization between processes running on different compute nodes. In contrast, Spark
uses a different approach to achieve parallelism, based on the concept of Resilient Distributed
Datasets (RDDs). RDDs are immutable distributed collections of data that can be transformed
and processed in parallel using a set of high-level operators, such as map, filter, reduce, and
join.

2.3.2 Parallel Algorithms for Deep Learning

TrainingDLmodels is computationally expensive, e.g. training ResNet-50 [104] over a single
V100 GPU requires about 30 hours. Hence distributed training on HPC systems is common for
large models and datasets. The distributed minibatch algorithm [105] provides a general par-
allelization scheme applicable across various machine learning algorithms. The fundamental
principle underlying this approach is the following: within any gradient-based ML algorithm,
such as minibatch SGD as presented in Algorithm 2, local gradients are computed indepen-
dently and subsequently sent to a coordinator node, or reduced via a collective communication
primitive. When using a coordinator, e.g., a parameter server, the latter aggregates these gradi-
ents, thereby obtaining a comprehensive representation of the global gradient with respect to all
local data points, and executes a singular update step. The updated model is then disseminated
to the local processes, which proceed to compute subsequent gradients. Extensive theoretical
analyses have validated this approach, and empirical evidence attests to its efficacy in practi-
cal settings. Notably, the scalability of this methodology is often characterized as embarrassingly
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parallel [106] (training processes proceed concurrently), highlighting its simplicity and effec-
tiveness.

In this section, we discuss the main parallelization techniques for training neural networks,
differing in the way the data or model dimensions are split: (1) distributing the training data
among processes (data parallelism), (2) vertically partitioning the DL model along its depth
(layer parallelism), allowing the overlap of computations between one layer and the next layer
(pipeline parallelism), (3) horizontally partitioning the DL model (model parallelism). We also
mention extensions to these approaches and existing implementations.

Data Parallelism In minibatch SGD (detailed in Algorithm 2), the input data is processed in
minibatches containing b samples. Most operators in DNNs and CNNs are independent with
respect to b, allowing to partition the computation along the data dimension. This idea was
first formalized in [105] as the distributed minibatch algorithm. In this context, the local minibatch
size, denoted as b, refers to the number of data samples processed by each process for a given
training iteration, while the effective batch size, defined as B = p× b, represents the ”true“ batch
size in terms of its effect onmodel convergence, taking into account the parallelization across all
p processes. In other words, the local minibatch size is the value seen by any individual training
process, while the effective batch size is the global batch size resulting from their summation.

Data parallelism leverages minibatch SGD by creating multiple DL model replicas among
the p training processes, each of which is trained in parallel on a different shard (i.e., partition)
of the training data. The forward and backward passes can then proceed independently, except
that after each backward pass, the gradients computed in Equation 2.4 by all replicas are aver-
aged across training processes before adjusting parameters w. This approach ensures that the
DL model replicas always apply the same updates on w and are thus in sync (assuming they
started from the same initial w(0)).

In controlled environments leveraging high-performance interconnects, data parallelism can
be implemented using collective communication primitives among all participating processes. Data
parallelism performs a single communication step per minibatch, which involves sending gra-
dients and aggregating them using the allreduce operation. This results in better resource uti-
lization, reduced communication overhead, and overall faster training times. Data parallelism
using communication collectives also facilitates the development of training scripts as the same
code can be run on all processes [32], making it a preferred choice for large-scale distributed
deep learning training.

Reusing the same notation as in [60], when presenting tensors such as x (input data), y (la-
bels), and w (parameters), we use the ∗ symbol to present a dimension for which its values are
replicated between all training processes. To emphasize that a tensor dimension is partitioned
among different processes, we use the number of processes p. For example, in data parallelism,
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x[p, ∗, ∗] implies that the input data x is split equally in dimension b (number of samples, as
defined in Section 4) and partitioned to p processes. The Allreduce arrow Allreduce←−−−−−− presents
allreduce communications. We define operations occurring on the training process n in data
parallelism as:

(IO) (x)n[p, ∗, ∗]← IO(shardn, b) in the first layer (2.12)

(FB) (y)n[p, ∗, ∗]← FW (xn[p, ∗, ∗], w[∗, ∗, ∗]) (2.13)

(FB)
(

dL

dx

)
n

[p, ∗, ∗]← BWdata

((
dL

dy

)
n

[p, ∗, ∗], w[∗, ∗, ∗]
)

(2.14)

(FB)
(

dL

dw

)
n

[∗, ∗, ∗]← BWparameters

((
dL

dy

)
n

[p, ∗, ∗], (x)n[p, ∗, ∗]
)

(2.15)

(GE) dL

dw
[∗, ∗, ∗] Allreduce←−−−−−−

p∑
n=1

(
( dL

dw
)n[∗, ∗, ∗]

)
(2.16)

(WU) w[∗, ∗, ∗]←WU

(
dL

dw
[∗, ∗, ∗]

)
(2.17)

The primary challenge with data parallelism is managing large effective minibatch sizes, as
they can impact themodel’s ability to generalize well to unseen data, as noted in [107]. Through
the implementation of various adjustments to the training procedure (use SGD with momen-
tum, gradient clipping, an initial warmup ramping up the learning rate, followed by a decreas-
ing learning rate schedule, and adapt the learning rate with the minibatch size), more recent
works have successfully managed to increase the effective batch size to 8K samples [108], 32K
samples [109], and even 64K [110] without losing considerable accuracy. While the generaliza-
tion issue still exists, it is not as severe as claimed in prior studies [111]. Finally, data parallelism
assumes that the model parameters can fit into the memory of each processing unit. This can
be a limiting factor for very large models which may require more memory than is available
on a single processing unit. In such a case, other forms of parallelism should complement data
parallelism.

Model-vertical Parallelism (Layer Parallelism) Despite early research on model parallelism
in DL [112], these efforts remained largely confined to academic circles, as data parallelism
proved sufficient for most production deployments. However, the rapid growth in model sizes
soon outpaced the advancements in compute andmemory capabilities of individual processing
units [113]. This scalability bottleneck hindered the effectiveness of data parallelism, prompt-
ing the exploration of alternative parallelization strategies. One such strategy is model-vertical
parallelism, also known as layer parallelism, which partitions the workload along the G layers of
a DNN. In this scheme, each training process receives a copy of the same minibatch, and differ-
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Figure 2.4 – Top: The naive model parallelism strategy leads to severe underutilization due
to the sequential nature of the network. Only one training process is active at a time. Bottom:
GPipe [113] divides the inputminibatch into smallermicrobatches, enabling different processes
to work with separate microbatches in parallel. Figure borrowed from [113].

ent layers are computed by separate training processes. The DNN architecture introduces layer
inter-dependencies, resulting in complex communication patterns that determine overall train-
ing performance. A major limitation of model-vertical parallelism is that, at any given moment,
all but one training process remains idle, as illustrated in Figure 2.4. The idling problem signif-
icantly hinders the compute efficiency of this approach, limiting its potential for scalability.

To address these challenges, several frameworks have been developed to facilitate the train-
ing of large-scale DNNs usingmodel parallelism. For instance, DistBelief [112] was designed to
support distributed computation in amodel-parallel fashion, enabling the training of very large
DNNs. Mesh-TensorFlow [114] is a language specifically designed for specifying distributed
tensor computations. These frameworks also support data parallelism.

Pipeline Parallelism Pipeline parallelism addresses the idling problem by dividing the in-
coming minibatch into smaller microbatches, creating a pipeline that enables concurrent com-
putation across different training processes (Figure 2.4), improving overall efficiency. Themini-
batch is first replicated across all processes and then divided locally into S microbatches of size
b
S . During each stage, the forward computation of a layer li on a data segment si is performed si-
multaneouslywith the computation of layer li+1 on data segment si−1, and so on. The backward
computation is executed in reversed order.

Pipeline parallelism was first introduced in GPipe [113], which partitions both model pa-
rameters and neural activations. However, GPipe requires a minibatch size proportional to the
number of pipeline partitions to hide the pipeline bubble (sum of the idle times of all the stages
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in the pipeline). PipeDream [115] addresses this limitation by maintaining copies of stale pa-
rameters, decreasing the pipeline bubble size. Subsequent research efforts, such asChimera [116],
aim to reduce the number of bubbles by leveraging sophisticated scheduling of bidirectional
pipelines. Some authors [117] have even eliminated bubbles entirely by splitting the activation
gradient and parameter gradient in backward computation. Several recent frameworks have
implemented pipeline parallelism, yielding robust and production-ready solutions. Megatron-
LM [118] implements pipeline parallelism for large-scale language models. DeepSpeed [119]
accelerates DL training by leveraging pipeline parallelism and other optimization techniques.
SageMaker [120], is a managed service for training and deploying DL models, including sup-
port for pipeline parallelism.

Model-horizontal Parallelism (Tensor Parallelism) Model-horizontal parallelism, also re-
ferred to as tensor parallelism, involves partitioning individual layers of the model across multi-
ple training processes. Specifically, each layer is divided equally among the number of output
filters [121] F or input channels C and distributed across p processes. Each process retains a
subset of the parameters for a given layer and performs partial computations of the output in
the forward and backward phases. With filter parallelism, each process n retains F

p filters and
generates a local output denoted (y)n of size b× F

p ×|Y |. Following the forward computation of
each layer, training processes must share their local output via an allgather operation, result-
ing in the global output y =

⋃p
n=1 (y)n. Similarly, after completing the backward computation of

each layer, training processesmust share their gradient of the input via an allreduce operation,
yielding the global gradient dL

dx =
∑p

n=1

(
dL
dx

)
n
.

However, tensor parallelism has several limitations. The need for intricate communication
during backpropagation at every layer can introduce a significant overhead. Furthermore, un-
like data parallelism, filter and channel parallelism necessitate multiple collective communi-
cation rounds at each layer, and every individual minibatch must be copied across all pro-
cesses. Recent implementations of tensor parallelism include Megatron-LM [118] and Sage-
Maker [120].

Hybrid Parallelism (3D Parallelism) Data, model, and pipeline parallelism each perform a
specific role in improving memory and compute efficiency when training DNNs. These ap-
proaches are complementary and can be combined together to form 3D parallelism. The model’s
layers are divided into pipeline stages stored on different accelerators, with each stage further
divided through model parallelism, creating a 2D combination that significantly reduces the
memory consumption of the model, optimizer, and activations. However, the model cannot be
infinitely partitioned due to increased communication overheads, which can hinder compute
efficiency.
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ZeRO-powered Data parallelism In standard data-parallel training, every process works on
a different minibatch and gradients are summed using an allreduce operation (involving a
communication volume of 2 × p). While data parallelism has become very popular, it takes
more GPU memory than necessary because model parameters and optimizer states are repli-
cated across all p processes. The Zero Redundancy Optimizer [122, 123] (ZeRO) is a memory
optimization for data parallelism, borrowing ideas from model parallelism at the same time.
This extension removes the memory redundancies by partitioning model states (parameters w,
gradients, and optimizer state) across data-parallel processes. When training, a dynamic com-
munication schedule is used to share the necessary states across distributed training processes,
improving memory efficiency with, at most, a total communication volume of 3× p.

Focus of thisWork The implementation of data parallelism is straightforward as it does not re-
quire anymodification to theDLmodel itself. Instead, the primary impact is on the data pipeline
used to feed the training data into the model. The simplicity of this approach allowed it to gain
widespread adoption in the community, as shown by its integration into various frameworks
such as PyTorch [124], TensorFlow [125] and Horovod [32]. For the same reason, we focus on
this form of parallelism in our work. Therefore, we have to deal with the constraint of selecting
DL models that fit the memory of a single processing unit.

2.4 Challenges Considered in this Work

In this dissertation, we are interested in how CL methods can take advantage of data par-
allelization across training processes, which is one of the main techniques to achieve training
scalability on HPC systems.

2.4.1 Mitigating Catastrophic Forgetting through Continual Learning at Scale

Scaling Continual Learning (CL) workloads requires a careful balance between mitigating
catastrophic forgetting (as discussed in Section 2.2.3), achieving efficient resource utilization,
achieving scalability, and maintaining the ability of the model to generalize well to unseen
data (as discussed in Section 2.4.2). Existing research often addresses parallel deep learning
techniques (quantitative aspect) and continual learning (qualitative aspect) separately. When
designing systems, software, or algorithms for Deep Learning, one must consider the intersec-
tion between the general fields of data science and systems engineering.

In essence, continual learning appears as an efficient solution to reduce training times and
save compute resources. However, the current literature primarily focuses on single-node ex-
periments, with accuracy being the sole metric of interest. The datasets used in these studies
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are often small-scale, such as MNIST or CIFAR, which may not fully represent the complex-
ity of real-world data. Moreover, the broader machine learning field tends to prioritize results
over the efficiency of the learning process. Training times are seldom reported as a metric, de-
spite their significance in real-world applications where data is continuously generated and the
model needs to adapt in real-time or near-real-time.

In contrast, deep learning, which has been around for a longer period, has seenmore studies
on scalability and parallelization techniques to improve training efficiency. The challenge, there-
fore, lies in integrating the strengths of both distributed deep learning and continual learning—
achieving an accuracy close to that of retraining the DL model from scratch while maintaining
the high performance, scalability, and low resource utilization of incremental training.

2.4.2 The Efficiency Tradeoff: Generalization Gap vs. Compute Efficiency

When training a DL model as detailed in Section 2.2.2, the objective is to reduce its inherent
error, striving to make its predictions as close as possible to the actual outcomes when deal-
ing with unseen data. This difference is commonly known as the generalization error. However,
during the optimization (training) procedure, we usually focus on reducing the empirical error,
which is the error calculated from the training data. Focusing solely on minimizing empirical
error can lead to overfitting. This limitation arises when a model becomes too complex and
essentially memorizes the training data, performing exceptionally well on it but struggling to
accurately predict new, unseen data. Some methods like regularization [126] limit the com-
plexity of the model, creating a balance between reducing empirical error and improving the
model’s ability to generalize. Unlike gradient descent (GD), which primarily aims to minimize
empirical error, stochastic gradient descent (SGD) works towards minimizing the generaliza-
tion error directly [127]. This is achieved by sampling a single training samples at each iteration,
as detailed in Algorithm 1. As a result, while GD is excellent at minimizing empirical error, SGD
often produces models with better generalization abilities.

In Section 2.3.2, we discussed how SGD can be data-parallelized using minibatches. In this
context, a larger number of training processes increases the effective minibatch size, yielding
updates computed with respect to more samples. As a result, the learning algorithm starts to
resemble GD rather than SGD, which can negatively affect themodel’s generalization capability
beyond a certain threshold. Thus, choosing the minibatch size is a trade-off between statistical
generalization, as a large minibatch can lead to diminishing returns beyond a certain point —
resulting in a decrease in the model’s achieved accuracy—, and a small minibatch does not take
full advantage of parallel processing capabilities of accelerators like GPUs, resulting in poor
compute efficiency.

Over the last 10 years, a number of tricks have been devised to increase the effective mini-
batch size beyond which generalization deteriorates. Depending on the workload, ”the end of
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the perfect scaling regime is anywhere from an effective minibatch size of 24 to a size of 213

data samples“ [128]. Beyond this threshold, adding more processes to the training procedure
becomes counterproductive, as the degradation in accuracy outweighs the benefits of increased
compute efficiency. To continue scaling the system beyond this point, one need to address the
strong scaling problem, which refers to the ability of a system to maintain consistent perfor-
mance as the number of computing resources increases.This means finding ways to effectively
utilize additional computing nodes without increasing the effective minibatch size, which can
involve techniques such as reducing communication overhead or employing more advanced
parallelization strategies.
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We introduce our main contribution: a distributed rehearsal buffer specifically designed to
enable data-parallel training for continual learning. We discuss the key design principles that
are at the foundation of our proposal.

Positioning. In this dissertation, we propose asynchronous data management techniques
that enable the design and implementation of a scalable distributed rehearsal buffer abstrac-
tion, which is instrumental in enabling continual learning to take advantage of data-parallel
techniques.

We summarize the contributions of this chapter as follows:
— We define the concept of rehearsal buffers to address continual learning, and introduce

extensions to leverage them for data-parallel training (Section 3.1).
— We introduce key design principles such as asynchronous techniques to hide the over-

head of managing rehearsal buffers and to enable a full spectrum of combinations for
minibatch augmentations. We achieve this by sampling the rehearsal buffers of remote
DLmodel replicas using low-overhead, RDMA-aware, all-to-all communication patterns
(Section 3.2).
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3.1 Distributed Rehearsal Buffers and Data Parallelism

In this section, we discuss the rationale of combining data parallelism and experience replay
to tackle the catastrophic forgetting problem. Both techniques can benefit from distributed sys-
tems in their own way: data parallelism speeds up the training procedure, and the instantiation
of local buffers on each training process aggregates a lot of memory allowing the storage of nu-
merous representatives. Thus, HPC techniques support both compute and statistical efficiency.

3.1.1 The choice for Data-parallel Experience Replay

Unlike vertical- and horizontal- model parallelism (Section 2.3) that require significant al-
terations to the DL model itself, data parallelism leaves the core model untouched, making it a
less intrusive method. Instead, the focus is solely on the data pipeline, which is responsible for
feeding training data into the model. This approach involves splitting the dataset into shards
and distributing them across multiple processing units. Each unit then processes its own shard
of data simultaneously, while the gradients are averaged during the back-propagation to keep
the replicas in sync. This approach effectively increases the overall training speed of learning
workloads. Moreover, its simplicity has led to its widespread adoption within the DL commu-
nity. Researchers appreciate the ease of implementation and the significant performance boost
it provides.

Experience Replay (Section 2.2.4), or rehearsal, is a simple continual learning technique in
which the model knowledge is reinforced by replaying samples from previous tasks [69, 34].
This technique has proven to be an effective way to reduce catastrophic forgetting [74, 72]. Re-
hearsal is achieved by appending a fixed number of representative samples to each minibatch
corresponding to the new training data, in order to obtain a larger augmented minibatch that
mixes new and old training samples. With this strategy, historic training samples that are repre-
sentative of patterns seen earlier are then reinjected into the training process. Similarly to data
parallelism, a benefit of rehearsal is that it requires no modifications to either the DL model
architecture or the training process, but relies solely on a modified data pipeline managing aug-
mentedminibatches containing representatives. In contrast, other CL approaches require different
hyperparameters, additional code to implement regularization, and/or additional generative
DL models.

In this dissertation, we focus on data-parallel continual learning based on rehearsal.
Prior work on rehearsal-based CL [15, 16, 17] has employed a single rehearsal buffer, with

the goal of leveraging a single GPU. Here, we tackle the problem of enabling high-performance,
scalable, and resource-efficient rehearsal-based CL on multiple GPUs. Efficient continual learn-
ing based on rehearsal that delivers high performance, scalability, and low resource utilization
in combination with data-parallel training is challenging for two reasons: (1) the cost of man-
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Table 3.1 – Continual Learning notation

T number of CL tasks
K number of classes
Bn local rehearsal buffer for process n
Ri

n subset of Bn containing representatives of class i
B distributed rehearsal buffer
Ri subset of B containing representatives of class i
N number of representatives stored per class
c number of candidates per minibatch
b default minibatch size (number of samples per minibatch)
r number of representatives added to augmented minibatches

aging a rehearsal buffer under concurrency (minibatch augmentations and constant updates)
is significant, and (2) efficient data-parallel training requires to instantiate multiple indepen-
dent rehearsal buffers (one per DL model replica), thus limiting the possible combinations for
minibatch augmentations (i.e., reducing their diversity) to representatives observed locally. To
address these challenges, we propose the use of a distributed rehearsal buffer: it focuses on
how to minimize the overheads involved by the rehearsal buffer management while retaining
the quality of minibatch augmentations under data-parallel training.

3.1.2 Aggregated Memory Space of Rehearsal Buffers

In practice, rehearsal selectively stores previously encountered raw data samples, called rep-
resentatives, into a rehearsal buffer. Representatives are then sampled back from this buffer to
augment the minibatches of new training tasks. With this strategy, historic training samples that
are representative of patterns seen earlier are retained in a limited-size rehearsal buffer. Finally,
the rehearsal buffer is updated by replacing some of its samples with newer ones.

In a basic version of rehearsal, a buffer denoted Bn stores representative training samples
from previous tasks. Every class i observed so far is attached to its ownmemory space Ri

n ∈ Bn,
with all memories Ri

n having the same capacity. At each iteration, r representatives from Bn are
used to augment the incoming minibatch m of size b, such that we obtain a larger minibatch of
size b + r mixing representatives and new training samples. After training with this augmented
minibatch, c training samples, called candidates, are selected from minibatch m to be inserted
into the memory Ri

n relevant to class i. If any of the memories Ri
n is full, then the new candi-

dates replace old representatives as needed (e.g., at random or using a different strategy). This
process ensures that the buffer Bn remains up-to-date at fine granularity (i.e., after each itera-
tion), holding representatives of both the current and all previous tasks. For clarity, Table 3.1
provides a summary of the notation used to characterize rehearsal buffers.

Starting from this basic version, we propose the design of a distributed rehearsal buffer that can
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Figure 3.1 – For every process n, a rehearsal buffer Bn contains representatives from the classes
seen so far. The distributed rehearsal buffer B contains representatives from the K classes.

be used with data-parallel training. The training procedure uses p distributed processes (each
attached to a dedicated GPU in our case). Each process maintains its own rehearsal buffer Bn.
This approach leverages the aggregated spare memory provided by a large number of com-
pute nodes, enabling the storage of a larger and more diverse set of representatives compared
to a single, centralized buffer. Previous studies have indicated that repeatedly training over a
limited number of representatives may result in overfitting, potentially impairing generaliza-
tion in continual learning [82]. In addition, large models have been shown to memorize small
data amounts, such as those found in rehearsal buffers with limited representatives, without
acquiring generalization capabilities [129]. To mitigate this issue, our method allows the aggre-
gated size of the rehearsal buffers to scale proportionally with the number of training processes,
retaining a larger and more diverse set of representatives. Conceptually, the disjoint union of
local rehearsal buffers Bn can be seen as a single distributed rehearsal buffer B as depicted in
Figure 3.1:

B =
p⊔

n=1

K⊔
i=1

Ri
n =

p⊔
n=1
Bn

Assume each process can spare up to Smax local memory for storing Bn. Given increasing
DLmodel sizes, the spare host andGPUmemory is under pressure, thus Smax is limited. On the
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other hand, we need to divide Smax evenly between the classes to avoid a bias in the selection
of the representatives (note that every local buffer Bn stores representatives of all possible K

classes). Therefore, each memory space Ri
n can grow up to a size of Smax/K, which means with

increasing number of classes K, each memory Ri
n shrinks. However, by using a distributed

rehearsal buffer, each Ri scales with the number of processes to a size of |Ri|max = p×Smax/K,
which increases the number of representatives stored per class N and therefore the diversity
of minibatch augmentations. This complements data-parallel training well, since data-parallel
training improves performance and scalability, not the quality of the results.

3.1.3 Selection and Eviction Policies

Since the rehearsal buffer B is smaller than the dataset D, we are interested in selection and
eviction policies for managing the distributed rehearsal buffer. One approach to populate the
local rehearsal buffers is to select candidate samples from incoming minibatches at random.
To this end, we propose Algorithm 3, which is executed by each process n at every training
iteration. Specifically, we pass the current minibatch mn of size b. Every sample of mn has a
c/b probability to be pushed into the memory Ri

n corresponding to the class i. As such, c acts
like an update rate: i.e., the higher the value of c, the more often representatives are renewed
in rehearsal buffer Bn. This approach has been implemented in the Naive Incremental Learning
(NIL) algorithm [20] and demonstrates low computational complexity.

Algorithm 3: Rehearsal buffer updates with c new candidates for each process n

1 Function update_buffer(m, c):
2 C ← select c random candidates from minibatch m
3 for x ∈ C do
4 if |Ri

n| >= |Ri
n|max then

5 replace a random representative from Ri
n with sample x

6 else
7 append sample x to Ri

n

In this work, since representatives are distributed among memories depicted Ri
n according

to their class labels. Thus, candidate samples belonging to a specific class compete against the
existing representatives of the same class to be retained in the buffer. We refer to this strategy as
the per-class management of representatives. As depicted in Figure 3.2, a candidate sample of class i

replaces a random representative in Ri
n if the latter is full, with each Ri

n having the same capac-
ity. Furthermore, our random selection policy means that each training sample of a given class
has the same probability of being replaced, regardless of whether it is a recent or old sample.
This approach both increases the diversity of the augmentations and forms an embarrassingly
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Figure 3.2 – For a given process n, c candidates from the incoming minibatch are sampled and
used to populate Bn. If the buffer for class i is full, representatives from Ri

n are replaced at
random. The figure depicts the rehearsal buffer Bn state for two subsequent iterations for c = 2.

parallel pattern that is easy to implement and that has a low performance overhead.

3.1.4 Sampling Strategies for Continual Learning

In our work, we have chosen to fix the size of local rehearsal buffers. We opt for a random
sampling strategy as illustrated in Algorithm 3, one of whose characteristics is that recent rep-
resentatives have a higher probability to be present in the buffer than early ones. Random sam-
plingmight be sub-optimal given that a task learned long ago is more likely to be forgotten than
a task learned recently, although this effect is mitigated by the per-class allocation of memory
spaces Ri

n. In particular, representatives of classes seen only in the first task cannot be overwrit-
ten by representatives of classes seen only in the last task. Still, more sophisticated strategies
than random sampling might further improve the achieved accuracy.

Reservoir sampling [89, 72] is a strategy to populate the rehearsal buffer of size |Bn| with
samples coming from a stream, with sample i on process n having a |Bn|/i probability to be se-
lected. This strategy guarantees the buffer to contain representatives uniformly sampled from
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the input data, which makes it equivalent to an offline random sampling at each time step. Au-
thors in [130] propose a variant of reservoir sampling that distinguishes between already-served
and not-served-yet representatives to make sure that they are replayed at least once before be-
ing evicted. Another study [75] propose Balanced Reservoir Sampling, which operates at the
class level to encourage the balance within the rehearsal buffer in terms of number of represen-
tatives per class i.e., a random representative from the most represented class is evicted when
the buffer is full. This strategy is similar to our random sampling with per-class memory alloca-
tions, with the added benefit that the number of classes does not need to be known before the
training procedure.

The distributed rehearsal buffer could leverage gradient-based selection [76] or loss-based
selection [75] of representatives to be stored. These strategies prioritize samples that contribute
most to the learning procedure, either bymaximizing the gradient norm or by focusing on sam-
ples with higher loss values, respectively. The overall expected loss of the rehearsal buffer can
be computed without backpropagation, which makes the former strategy less computationally
efficient than the latter. Since they are complementary and address different issues, these strate-
gies can be combined with reservoir sampling or Balanced Reservoir Sampling [75].

We leave such studies for future, as we focus on performance aspects and parallelization
techniques in this dissertation.

3.2 Transparent Global Sampling of Representatives

Our distributed rehearsal buffer is built from many local rehearsal buffers that might live
on different compute nodes. In this section, we motivate the need (1) to sample representatives
fromboth the local and remote rehearsal buffers i.e., globally, to help convergence of themodel in
all configurations; (2) to leverageHPC-oriented optimizations tomitigate associated overheads;
and (3) to manage such global sampling asynchronously in the background, effectively hiding
it from the perspective of the main training procedure.

3.2.1 The Need for Global Sampling of Representatives

We propose to leverage rehearsal buffers to retain representative samples on each training
process, allowing to later reinject them into the training procedure for rehearsal. Wemake these
local buffers distributed thanks to global sampling, so that minibatch augmentations can benefit
from representatives stored remotely. In this section, wemotivate this particular design decision
in two settings : uniform and non-uniform input data distributions.

The minibatch SGD algorithm described in Section 2.2.2 requires individual minibatches
being sampled from random permutations of the dataset, which are generated at the start of
each epoch. Additionally, as discussed in Section 2.3.2, data-parallel training involves synchro-
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nizing replicas of the model, each trained on a different data shard. In practice, distributing the
training of a DNN in a data parallel fashion requires loading input samples onto each compute
node, typically through a Parallel File System (PFS). This allows each training process to ingest
a different shard of the samples during each epoch, with the common assumption that indices
should be globally shuffled to enhance generalization [131, 132]. The shuffling can either be
performed in-place or by loading the dataset into DRAM space with a random order [133].

However, due to rapidly growing dataset sizes, this approach of storing entire datasets lo-
cally has become increasingly infeasible. The authors in [134] proposed local shuffling to shuf-
fle training samples from a local data shard, thereby saving I/O operations. In order to study
the practical conditions under which the local and global gradients equivalence can be applied
without degrading model convergence, the authors quantified the bias introduced by the shuf-
fling error ϵ(A, D) of algorithm A. The local shuffling scheme can be formulated as insufficient
global shuffling that is not uniformly distributed, and has the following convergence rate’s up-
per bound in the non-convex case [135]:

O

(√
1

S|D|
+ log|D|
|D|

+ |D|ϵ(A, D)2

p× b

)
(3.1)

Where |D| is the number of samples in the static training dataset D, p is the number of train-
ing processes, b is the minibatch size (per training process), and S is the number of epochs. To
ensure that shuffling error does not dominate the bound in Equation 3.1, the following condi-
tion has to be satisfied: ϵ(A, D) ≤

√
p×b
|D| [135]. To simplify the notation, we use d = |D| to denote

the number of samples in the dataset. The shuffling error is defined as follows:

ϵ(A, D) = 1
2

∑
πi([d])∈π([d])

|uπi [d]− vπi [d](A, D)| (3.2)

Where uπ is the uniform distribution on the set that contains all permutations of π([d]), i.e.
permutations of all different ways the samples can be picked from the dataset (|D|! permuta-
tions), and vπ[d](A, d) is the distribution after shuffling the dataset containing d = |D| samples
using algorithm A. Furthermore, the authors introduce the partial local sampling scheme as a
method to control the fraction Q of input data that is globally shuffled. This stands as a mid-
dle ground between global shuffling, where the entire dataset is shuffled and distributed across
training processes, and local shuffling, where each process reuses the same data shard during
each epoch. The aim of partial shuffling is to assure that the shuffling error ϵ(A, |D|) does not
dominate the convergence bound by setting Q accordingly. The number of permutations σ that
would include the desired partial local shuffling factor Q between the p shards is as follows:

σ = |D|
p

!× P
|D|(p−1)

p
Q|D|

p

× P
|D|

p
Q|D|

p

×
( |D|

p
(p− 1)

)
! (3.3)
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The authors simplify Equation 3.2 which can be written as:

ϵ(A, D) = 1− σ

|D|! (3.4)

The authors conclude that “for practical dataset sizes and number of training processes, the
shuffling error ϵ(A, D) would approach the value 1, and the shuffling error would hence domi-
nate the convergence rate in Equation 3.1. For instance, practical settings for training ImageNet-
1K (d = |D| = 1.2 × 106) on any number of training processes 4 ≤ p ≤ 100.000 and with a
global, effective minibatch size p× b of less than 100K yields a shuffling error ϵ(A, D) ≈ 1. This
result shows that more studies for locality schemes are needed to improve on the convergence
bounds.” As it stands, one can not rule out the usefulness of global shuffling, even in the ideal
data parallel setting where local and global data distributions are uniform.

The authors conducted extensive experiments to verify this point in practice. In most of
them, local shuffling achieves similar accuracy as the global shuffling approach. However, this is
not always the case. For instance, when the training procedure is scaled up to 2,048 GPUs using
the ResNet-50 model with ImageNet-1K, global shuffling achieves a higher accuracy than local
sampling, with a gap of 9%. Similarly, for ImageNet-50 (a subset of 50 classes from the original
dataset) using 128 GPUs, the gap between global and local shuffling results in up to a 30% drop
in accuracy. Even using 32 GPUs, a 10% decrease in accuracy is observed. For ImageNet-50 with
128 training processes, a high exchange rate of Q ≥ 70% is necessary to achieve convergence to
an accuracy that is substantially closer to that of global shuffling compared to local shuffling.
This observation suggests that global shuffling is particularly important when the number of
classes to be learned is low. The experiments reveal that local shuffling achieves a similar accu-
racy as global shuffling inmost, but not all cases, suggesting that someDNNs aremore sensitive
to sample diversity than others. Therefore, setting Q to a sufficiently high value is necessary to
exchange a fraction of samples globally, which guarantees that model convergence will not be
degraded in a data parallel context.

Authors in [136] report on extensive experiments using different shuffling algorithms, and
conclude that the more random training samples are, the better the convergence rate of SGD is.
Notably, the Sliding-Window Shuffle using a sliding window to perform partial data shuffles,
and partial shuffling based on reservoir sampling, both yield a degraded accuracy.

Performing minibatch augmentations using the local rehearsal buffer Bn (without global
sampling) is akin to partial local sampling. However, authors of the results discussed in [135]
consider a fixed datasetD whose permutations can be calculated before each epoch, whereaswe
sample r random representatives from the rehearsal buffer each time aminibatch is augmented.
Consequently, the convergence upper bound in Equation 3.1 does not apply to our specific set-
ting, as 1) a given representative might be sampled from Bn multiple times during an epoch;
and 2) some random representatives are updated after every training iteration. Despite this, as
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shown in the articles mentioned above, information exchange between training processes can
be beneficial in the long term for learning convergence. We choose to opt for global sampling
of representatives based on these results. We are aware that additional work is necessary to
formally demonstrate the extent to which these results apply to our continual learning setting
based on rehearsal. We share the following hypotheses:

— As a given representativemight be sampledmultiple times to be reinjected into the train-
ing procedure when using rehearsal (especially if the update rate c is set to a low value),
the bias introduced by locality would be amplified, affecting model convergence nega-
tively. In contrast, global sampling enhances the diversity of minibatch augmentations
by sampling from the distributed rehearsal buffer.

— As local buffers are progressively populated, the same representatives tend to be sam-
pled often towards the early stage of the training procedure. The previous bias is then
amplified during the early stage of training, which can be particularly detrimental for
training stability on the long run.

— In continual learning scenarios, the input data is typically acquired over time, which
often leads to tasks with few classes to learn. As shown by experiments in [134], such
settings do not benefit locality schemes.

To ensure the wide applicability of rehearsal with data parallelism, global sampling might
be useful as ameans to accommodate all scenarios, batched vs. streamed settings, models, train-
ing scales, and datasets. This design decision bolsters the robustness and versatility of our dis-
tributed rehearsal buffer, regardless of the specific context or problem at hand.

3.2.2 Efficient Augmentation of Minibatches

Experience Replay consists in interleaving representatives with the current minibatch m to
build a new augmented minibatch m′. As depicted in Figure 3.3, at every training iteration, r

representatives are sampledwithout replacement from B to assemble m′, whose size is b+r. We
call this operation minibatch augmentation. Existing research has shown that uniform sampling
from a rehearsal buffer is effective in many cases [20, 73], while demonstrating no additional
computational complexity. Thus, we adopt the same principle in our proposal.

With a distributed rehearsal buffer B, each process n needs to sample r representatives con-
currently with the other processes. To this end, we could simply adopt a naive embarrassingly
parallel strategy that chooses the r representatives of each process n from the local rehearsal
buffer Bn. Although highly efficient and easy to implement, such a strategy limits the number
of combinations possible for the selection of the r representatives relative to the global rehearsal
buffer B, which reduces the diversity and the quality of the augmentations. As a consequence,
one need to provide a fair sampling that gives every training sample in B, regardless of its lo-
cation, an equal opportunity to be selected among the r representatives of each process. This
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Figure 3.3 – On a given process n, every incoming minibatch is augmented with r representa-
tives sampled randomly andwithout replacement from the distributed rehearsal bufferB. Here,
r = 2 on two subsequent iterations. Sampling from B introduces communication between the p
distributed processes.

approach allows any model replica to ingest any training sample as input. Algorithm 4 details
the procedure for selecting representatives to be sampled. Each process n generates a list of r

indices between 0 and the maximum number of representatives stored in the distributed re-
hearsal buffer |B|. This includes the aggregation of the p local buffers. Once such global indices
have been generated, indices local to each Bn are derived considering the number of different
classes K and the number of representatives N stored per class.

To address global sampling efficiently, we leverage two technologies commonly used in
HPC. First, we propose to pin the space reserved for each local rehearsal bufferBn into themem-
ory of the compute node hosting process n. Then, we expose the pinnedmemory for RDMA ac-
cess. Thus, we enable low-overhead, fine-grain access to the rehearsal buffer of each process
from every other process. Secondly, while global sampling is synchronized with allreduce

operations for gradient updates, we aim to decouple buffer management from model train-
ing. This decoupling allows independent servers to respond to requests without relying on
additional synchronization barriers that would introduce unnecessary delays. Therefore, we
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Algorithm 4: Pick r random representatives from the distributed rehearsal buffer B
1 Function pick_random_indices(r):
2 map← {}
3 C ← select r indices without replacement from [0, |B|]
4 for i ∈ C do
5 local_index← i%(K ×N)
6 n← i/(K ×N)
7 append local_index to map[n]
8 return map

propose a point-to-point communication pattern powered by low-overhead, remote procedure
calls (RPCs). Specifically, we introduce several key concepts: (1) concurrency control based on
fine-grain locking to guarantee consistency and mitigate contention between updates to the re-
hearsal buffers and local/remote reads issued by augmentations; (2) progressive assembly of
augmented minibatches using concurrent asynchronous RPCs, which hide the remote access
latency; (3) RPC consolidation to transfer the training samples in bulk from the same remote
rehearsal buffer, reducing the number of RPCs.

3.2.3 Asynchronous Management of Rehearsal Buffers

Even with our proposed optimizations, the overheads of managing a distributed rehearsal
buffer may still be significant. Therefore, we also devise an asynchronous technique to hide
these overheads, such that a training iteration can proceed without blocking every time that it
needs to interact with the distributed rehearsal buffer. That way, the distributed rehearsal buffer
management is effectively hidden from the perspective of the main training procedure.

To this end, we revisit the major steps (proposed in Section 2.3) of CL based on rehearsal
and data-parallel training: 1 (IO) loading an original minibatch from the data pipeline; 2
prepare the augmented minibatches, which involves global sampling from the distributed re-
hearsal buffer; 3 update the distributed rehearsal buffer using the new samples of the original
minibatches; 4 (FB) perform a forward pass with the augmented minibatch as input data, fol-
lowed by a backward pass that averages the gradients and updates the parameters w of each
DL model replica; 5 (GE) the gradient exchange across distributed training processes and 6
(WU) updating the DNN weights.

Therefore, we can use the following strategy: 2 wait until r representatives were collected
asynchronously by global sampling started during the previous iteration and concatenate them
with the current minibatch to obtain an augmented minibatch; 3 start an asynchronous up-
date of the distributed rehearsal buffer using the original minibatch, followed by asynchronous
global sampling of the next r representatives; perform the same steps 4 , 5 and 6 as above
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Figure 3.4 – Asynchronous updates of the rehearsal buffers and global augmentations: r repre-
sentatives sampled globally beginning with the previous iteration are used by the training loop
to assemble an augmented minibatch on each process n. Meanwhile, the distributed rehearsal
buffer extracts candidates from the current minibatch to update each Bn locally, then collects
the next r representatives using global sampling.

so that the rehearsal management is conducted concurrently with the training iteration. This
procedure is illustrated in Figure 3.4. The waiting step 2 , which acts as a (blocking) synchro-
nization point between the training procedure and minibatch augmentations, is highlighted in
red.

Using this approach, training iterations only need to wait if buffer updates and global sam-
pling cannot keep up with them, introducing a delay. In an ideal scenario, the communication
and synchronization overheads related to the management of the rehearsal buffer are fully ab-
sorbed by training steps.

It is important to note though that even in the case when the rehearsal buffer overhead can
be fully absorbed asynchronously (i.e., no wait at step 2 blocking the training procedure), the
training iteration operates with an augmented minibatch of size b + r (instead of the original
size b). Thus, each training iteration is slowed down by a factor of r/b. This overhead is inherent
to rehearsal-based CL and cannot be avoided i.e., additional representatives are fed to the DNN,
inducing extra time to perform forward and backward passes. However, by fixing r and hiding
the rehearsal buffer management overheads through asynchronous techniques, our approach
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can deliver performance levels close to the theoretical lower bound at scale.
Our approach assembles augmented minibatches in advance, anticipating the next train-

ing iteration. The current training iteration operates on a different, read-only minibatch. This is
purely a performance improvement and is functionally equivalent to a synchronous rehearsal
CL approach, therefore subject to the same convergence. Furthermore, our approach is embar-
rassingly parallel because each training process executes Algorithm 4 to sample representatives
(without replacement) from other workers without informing or involving them in the deci-
sion. This also means that random sampling is conducted with replacement at the global level.
Besides, synchronization happens only at the process level (i.e., replacement of samples can be
delayed until reads have finished) and not across processes.

In this chapter, we described a novel distributed rehearsal buffer abstraction that effi-
ciently complements data-parallel training onmultipleGPUs, allowingus to achieve
short runtime and scalability while retaining high accuracy. It leverages a set of
buffers (local to each GPU) and uses several asynchronous techniques for updating
these local buffers in an embarrassingly parallel fashion, all while handling the com-
munication overheads necessary to augment input minibatches (groups of training
samples fed to themodel) using unbiased, global sampling. The novelty of ourwork
lies in the techniques to make rehearsal scalable in the context of data-parallel train-
ing, which we believe presents an opportunity for specialized data management
techniques that are applicable to a broad class of rehearsal approaches. To our best
knowledge, such HPC-oriented aspects aimed at improving training performance
using rehearsal were not explored before.

Conclusion
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In this chapter we dive into the details of Neomem, the implementation of our proposal of a
distributed rehearsal buffer supporting the global sampling of representatives. The architecture
consists of multiple instances, each acting as both a client and a server, providing services to
interact with rehearsal buffers through Remote Procedure Calls (RPCs).

We summarize the contributions of this chapter as follows:
— We present the architectural overview of our implementation (Section 4.1).
— Next,wepresent asynchronous techniques leveraged to prepare augmentedminibatches

in advance, in order to runNeomem in parallel with the training procedure (Section 4.2).
— We also present some optimizations in data movements, such as bulk transfers of rep-

resentatives, in-place preparation of augmented minibatches and pinned memory (Sec-
tion 4.3).
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Our Neomem implementation is publicly available as an open-source project [29]. For re-
producibility purposes, we also provide the Python library managing the Continual Learn-
ing setting named distributed-continual-learning [30]. The approach is implemented as a high-
performance C++ library with Python bindings.

4.1 Architectural Overview

Neomem is responsible for accumulating representatives in the buffer and serving aug-
mentedminibatches. It utilizes instances onmultiple nodes to leverage the aggregated memory
ofmany compute resources.Neomemachieves these operations by leveraging high-performance
techniques to avoid inducing any overhead that would interfere with the training procedure.
The implementation of such optimizations is detailed in next sections.

4.1.1 Storing and Serving Data Samples

Neomem is responsible for the following two functions:
— The accumulation of representatives in the buffer: Neomem stores representative samples

in host memory in the form of tensors. By utilizing instances of Neomem on multiple
nodes, the system can leverage the aggregated memory of many compute resources to
store a larger number of representatives. This aspect is detailed in Section 3.1.

— The service of augmented minibatches: Neomem manages the assembly of augmented
minibatches, sampling representatives stored in both local and remote buffers. This is
enabled by global sampling, allowing every process involved in the training procedure to
sample representatives stored on other (remote) processes. Global sampling is detailed
in Section 3.2.

The architecture of Neomem is a distributed system leveraging point-to-point communica-
tion, where each instance functions as both a client and a server simultaneously. In this setup,
every instance is capable of providing and consuming services. Each server in this architecture
exposes a set of RPCs that can be invoked by any client. This paradigm is appropriate for client-
server patterns, in which the server is passive and handles requests from clients on-demand.
RPCs enable the execution of functions as if they were local, abstracting the underlying com-
munication details.

Instances that provide RPC services are referred to as providers. Providers encapsulate the
server-side functionality, handling incoming requests, processing them, and returning the re-
sults to the requesting client i.e., the current or another provider. Each provider runs a polling
loop in a separate thread async_process(), which is responsible for continuously monitoring
and processing incoming requests in the distributed system. At the core of this system are two
queue objects: a request queue and a response queue.
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Figure 4.1 – Gradients are exchanged using MPI allreduce collectives. Representatives are ex-
changed between remote processes using RPC requests.

— Request queue: this queue stores incoming requests to be processed by the server. Re-
quest objects encapsulate a minibatch of size b originating from the data pipeline, as well
as a pre-allocated augmented minibatch of size b + r to be prepared. Such request ob-
jects are pushed into the queue via the accumulate() function, and consumed by the
async_process() thread.

— Response queue: this queue is used to signal that an augmentedminibatch of size b+r has
been prepared. Specifically, such an augmented minibatch contains b original samples
and r representatives. The wait() function retrieves the responses from the queue, or
waits if the response queue has not been populated by async_process() yet. Response
objects only contain the number of representatives r contained in the last augmented
minibatch. The emission of a response object is a signal that the oldest augmented mini-
batch in the request queue, which had been allocated before the call to accumulate(), is
ready for subsequent use.

The functions interacting with these two queue objects, accumulate() and wait() respec-
tively, are further detailed in Table 4.1. Queues are managed using fine-grain locking to avoid
inconsistent states.

4.1.2 Integration with the Training Procedure

We implemented our approach as a high-performance C++ library that offers convenient
bindings for Python using pybind11, exposing the public API detailed in Table 4.1 to the DL
model training procedure. The complexity of our proposal is then completely hidden from end-
users using PythonAI runtimes. Figure 4.1 summarizes the general idea: the training procedure
is implemented using any AI runtime, typically using Python, and interacts in a parallel fashion
with Neomem (managing the distributed rehearsal buffer) through bindings.

The communication between the model training code and the distributed rehearsal buffer is
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Table 4.1 – Neomem public API

Method Description

accumulate(minibatch, aug_minibatch) This function is responsible for (1) the prepara-
tion of the next augmented minibatch, involving
the asynchronous global sampling of r representa-
tives; and (2) the accumulation of new represen-
tatives in the local buffer following the policy de-
scribed in Algorithm 3. accumulate() should be in-
voked with an original minibatch originating from
the data pipeline, and a pre-allocated augmented
minibatch to be prepared as arguments.

wait() -> num_representatives This functionwaits for (1) an augmentedminibatch
to be ready, and (2) the local buffer to be updated
with new representatives. wait() acts as a synchro-
nization point (as illustrated in Figure 3.4), sus-
pending the trainingprocedure in case it is not.Only
the number of representatives contained in the pre-
allocated augmented minibatch is returned, as the
latter is modified in-place.

async_process() This function consumes the data pushed into the re-
quest queue by accumulate(), processes it, triggers
the operations needed tomanage the distributed re-
hearsal buffer, and signals the completion of the cur-
rent augmentation via the response queue (which
will be consumed in turn by wait()). This function
operates in a separate thread.

achieved using a convenient update primitive, which encapsulates all of our contributions. This
primitive is illustrated in Listing 4.1.

1 minibatch = DataPipeline . get_next_minibatch ()
2 aug_minibatch = preallocate_augmented_minibatch ()
3
4 def update ():
5 r = RehearsalBuffer .wait () # wait if the augmentation is not ready yet
6 RehearsalBuffer . accumulate (minibatch , aug_minibatch )
7 return r # aug_minibatch now contains b+r training samples

Listing 4.1 – The update primitive (highlighted in pink) waits for the augmented minibatch
being prepared to be ready for ingestion, then updates the local rehearsal buffer, then starts
the preparation of the next augmented minibatch.
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The design proposed in Section 4.1.1 involves queues allowing for multiple minibatches to
be augmented in advance. Such a scenario could occur in caseswhere individualminibatch aug-
mentations (involving global sampling of representatives) were faster than individual training
iterations, resulting in multiple calls to accumulate() for a single call to wait(). However, for
simplicity’s sake, we have chosen to define the update() primitive so that a call to wait() cor-
responds to a call to accumulate() in a 1:1 fashion.

Prior to processing by Neomem, a minibatch designated for augmentationmust be declared
in Python and transferred to Neomem via pybind11. Neomem then receives this pre-allocated
minibatch and performs in-place augmentation within the C++ code to avoid unnecessary
copies. However, given that this augmentation occurs concurrently with model training, the
sameminibatch cannot be utilized simultaneously for gradient computation. Consequently, two
augmented minibatches are required for each iteration: one for model training (acquired prior
to the preceding invocation of wait()), and another for the augmentation procedure executed
by Neomem. Before the subsequent iteration, these two variables are interchanged, as elabo-
rated in Listing 4.2.

1 aug_minibatch_1 , aug_minibatch_2 = preallocate_augmented_minibatches ()
2
3 for i in range( num_steps ):
4 minibatch = DataPipeline . get_next_minibatch ()
5
6 if i % 2 == 0:
7 r = RehearsalBuffer . update (minibatch , aug_minibatch_1 )
8 Model.train( aug_minibatch_2 )
9 else:
10 r = RehearsalBuffer . update (minibatch , aug_minibatch_2 )
11 Model.train( aug_minibatch_1 )

Listing 4.2 – Example of a training loop integrating our proposal.

For the purpose of this work, we integrate our proposal with PyTorch [124] and rely on
Horovod [32] to enable data parallelism. We rely on NVIDIA DALI [137] as the data pipeline
that provides the original minibatches. Thanks to the encapsulation into a separate primitive,
our approach can be easily extended to support other AI runtimes (such as TensorFlow [125]),
data-parallel implementations or data pipelines.

4.2 Asynchronous Techniques for Efficient Buffer Management

Unlike model training code, which is usually written in Python, we implemented Neomem
in C++. There are multiple reasons for this choice: (1) Python has limited support for multi-
threaded concurrency due to the global interpreter lock that allows only a single thread to run
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Mercury:
— Provides RPC imple-

mentation
— Supports a wide range

of transport backends
— Manual progress loop

Argobots:
— Provides user-level

threading (ULT) run-
time

Figure 4.2 – Margo is a library built on top of Mercury and Argobots, running a Mercury
progress loop in a ULT and converting RPC handlers into ULTs.

interpreted code; (2) our approach requires low-overhead access to system-level resources, no-
tably operations involving CUDA transfers, and a more direct control over memory manage-
ment; (3) the overheads of interpreted languages are unacceptable in our case given the need
to provide consistency and manage multiple connections under concurrency. Overall, C++
offers robust support for parallelization techniques and asynchronous data movements, en-
abling us to fully leverage multi-core processors and GPU acceleration. Neomem builds atop
the Mochi framework [138] in order to leverage its network abstraction that enables the use of
high-performance network transports (e.g., libfabric, UCX), backends (e.g., tcp, verbs, gni) and
techniques (RDMA).

4.2.1 Multi-threaded Concurrency

The Mochi framework [138] enables the composition of specialized distributed data ser-
vices from a collection of connectable subservices. Mercury implements RPCs, while Argobots
provides user-level threading (ULT) capabilities for concurrencymanagement.Margo provides
Argobots-aware wrappers to Mercury functions, simplifying service development by express-
ingMercury operations as conventional blocking functions. This way, the caller does not need to
handle progress loops or callbacks. The relationship between these components is illustrated in
Figure 4.2. Margo internally suspends callers after initiating a Mercury operation and automat-
ically resumes them upon completion. This design enables other concurrent user-level threads
to make progress while Mercury operations are ongoing, without consuming operating system
threads.

Each Neomem provider runs a polling loop inside the async_process() function executed
in a dedicatedArgobots ULT. This lightweight thread runs in its own execution streamdriving the
Mercury progress loop. This is necessary to avoid collisionswithMPI collective operations (that
would result in program hangs) issued by the model training code to synchronize gradients
(we recall that the rehearsal management operated by Neomem is cadenced by the allreduce

operations issued by theAI runtime, acting like synchronization barriers). The interactionswith
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request and response queues detailed in Section 4.1.1 require locking to ensure thread safety.

From the client perspective, each provider is responsible for: (1) preparing the next aug-
mented minibatch (involving global sampling); and (2) accumulating representatives in the
local rehearsal buffer via accumulate(), as outlined in Table 4.1. Conversely, from the server
perspective, this entails serving an average of r representatives to other providers. Every local
buffer is therefore accessed for bothwriting and reading operations during each iteration, poten-
tially concurrently, as independent servers respond to requests without necessitating additional
synchronization barriers beyond those issued by the AI runtime for gradient reduction. To en-
sure consistency of local rehearsal buffers and mitigate contention between updates and reads,
concurrency control based on fine-grain locking is essential. Specifically, we want to avoid rep-
resentatives being sampled by a remote process while being replaced locally by accumulate().

To serve concurrent RPCs, we implemented a low-overhead, userspace thread pool on each
provider using Argobots. This thread pool allows for efficient handling of multiple RPCs simul-
taneously. The function get_representative() is invoked via RPC and interacts with the local
buffer for a read operation following the policy described in Algorithm 4. Threads can be redi-
rected to different cores based on the provider configuration, allowing for resource sandboxing.

4.2.2 Non-blocking RPCs

Non-blocking RPCs enable providers to access services like get_representatives() from
other instances in the distributed system without waiting for a response. This approach al-
lows providers to continue with other tasks while waiting for the RPC to complete. By us-
ing concurrent asynchronous RPCs, one can progressively assemble augmented minibatches,
which helps to hide remote access latency introduced by the global sampling of representa-
tives. Specifically, at every iteration, each client dispatches r RPCs to sample r remote represen-
tatives via dispatch_rpcs(). Once all RPCs are issued, clients wait for their resolution using
resolve_rpcs(). Training samples that are returned are then written in a page-locked buffer as
they resolve. These functions are further detailed in Table 4.2.

Using MPI collectives is an alternative to RPCs, albeit with certain limitations. Collective
communication assumes that all participants are ready before they can proceed. In our case,
we have a client-server model where independent servers respond to requests that are not nec-
essarily synchronized because of contention. One-sided MPI communication could potentially
address this limitation, but it is non-trivial to adopt in a consistent fashion (e.g., ensuring one-
sided get from the rehearsal buffer does not occur in the middle of an update).

71



Chapter 4 – Neomem: an Efficient Implementation of Rehearsal-based Continual Learning

Table 4.2 – Description of the Neomem functions used to issue RPCs

Method Description

dispatch_rpcs(vector<async_res>

responses)

This function is invoked by accumulate() to
prepare the next augmented minibatch. It dis-
patches r get_representative() asynchronous
RPCs to sample r representatives on remote train-
ing processes selected randomly. This function calls
pick_random_indices() as detailed in Algorithm 4
to generate indices globally. Such indices determine
both the process n to contact and the local index of
the representative to sample in the corresponding
buffer.

get_representative(request& req, int i) This function is invoked remotely as a RPC i.e., it is
an RPC handler function to service global sampling
of representatives. It interacts with the local buffer
for a read operation at index i (passed as argument
by the caller). Index i is chosen by dispatch_rpcs()
via pick_random_indices() to ensure a selection
without replacement across the entire distributed
rehearsal buffer. The representative training sample
is written back to the req object.

resolve_rpcs(vector<async_res>

responses)

This function waits for concurrent RPCs issued by
dispatch_rpcs() to resolve. The returned train-
ing samples are written into a pre-allocated page-
locked buffer.

4.2.3 Asynchronous CUDA Copies

Minibatches originating from the data pipeline are typically moved onto the GPU by a dat-
aloader for faster ingestion by the model training code. References to these minibatches are
then passed toNeomem through bindings, alongside an augmentedminibatch pre-allocated on
the GPU memory (as detailed in Section 4.1.2) via accumulate(minibatch, aug_minibatch).
Neomemworkswith this data using theCUDAAPI: variable minibatch is only utilized for read-
only operations,while aug_minibatch is exclusivelywritten into, undergoing in-placemodifica-
tions visible fromPython.Neomem takes advantage of dedicated, asynchronousCUDA streams
to improve data transfer performance between augmented minibatches residing in GPU mem-
ory and representatives residing in host memory. This enables the overlap of data transfer with
computation, minimizing the time spent waiting for data to be transferred. There are several
key operations in Neomem that benefit from asynchronous CUDA copies which we summarize
in Table 4.3.
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Table 4.3 – Description of the Neomem functions taking advantage of the CUDA API

Method Description

copy_last_batch(minibatch,

aug_minibatch)

This function is invoked by accumulate(). It copies
the b training samples from the original minibatch
to the b first “slots” of the pre-allocated augmented
minibatch (of size b + r). In this way, the current
minibatch is used to prepare the next augmented
minibatch. This operation can be performed asyn-
chronously.

copy_buffer_to_batch() This function is invoked after resolve_rpcs() com-
pleted. It copies the r representatives that were just
sampled globally, and written to a receiving buffer,
to the r last “slots” of the pre-allocated augmented
minibatch of size b + r. This operation can be per-
formed asynchronously.

update_buffer(minibatch, c) This function is invoked by accumulate(). It up-
dates the local rehearsal buffer with c random sam-
ples from the input minibatch following the policy
described inAlgorithm 3. This operation can be per-
formed asynchronously.

To ensure correctness, CUDA streams are synchronized at the end of each iteration, with
one synchronization point being when the wait() function is called. This ensures that all data
transfers and computations have completed before proceeding to the next iteration. We have
instantiated a different CUDA stream for each of the functions described in Table 4.3. However,
it is worth noting that additional CUDA streams can be created to transfer more data without
significantly impacting performance, allowing for further overlap of data transfer with compu-
tation.

4.3 I/O Optimizations in Data Movements

When building a system leveraging parallelization techniques like Neomem,managing low-
level read/write client interfaces presents a significant challenge. This complexity arises from
three primary factors: (1) competition for network bandwidth, since many processes sharing
the same compute node need to transfer training samples from remote rehearsal buffers at the
same time; (2) difficult all-to-all communication patterns, since each process needs to access the
rehearsal buffers of every other process; (3) low latency requirements, since each process needs
to access a small number of training samples from each remote rehearsal buffer. We propose
techniques aiming to optimize the system’s performance and enable seamless integration of
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Figure 4.3 – The RPC system implemented in Mercury has a focus on high concurrency and
support explicit bulk transfers.

remote rehearsal buffers in distributed environments.

4.3.1 Transferring Data using RDMA-enabled RPCs

To enhance the performance of global sampling, Neomem employs Remote Direct Memory
Access [102] (RDMA) technologywhen it is natively supported by the underlying network fab-
ric. RDMA is a hardware-supported technology that allows a process on one compute node to
access the memory of another process on a different node over the network, without involving
the CPU. A fast path for I/O operations is therefore created in addition to RPC responses, as
illustrated in Figure 4.3. The RDMA protocol supports zero-copy networking by enabling the
host adapter to determine, upon a packet’s arrival in the network, which application should re-
ceive it and where it should be stored within the application’s memory space. This eliminates
the need to send the packet to the kernel for processing and copying it into the user applica-
tion’s memory. Instead, the host adapter directly places the packet contents into the application
buffer, bypassing the kernel intervention in the communication process entirely. This approach
significantly reduces the latency of small accesses to remote rehearsal buffers,making it a crucial
component of our efficient data transfer strategy.

To achieve RDMA transfers in practice, clients expose buffers of memory of the size required
to store r representatives using Mercury. Transfers can then take place in both ways: either the
server pulls data from thismemory, or the serverswrite directly to it. In our implementation, the
servers are responsible for sampling representatives from their local buffers and writing them
to the memory exposed by the clients. Besides, the exposed buffers are instantiated only once
and live for the lifetime of the application, ensuring that the memory is always available for
RDMA transfers and avoiding the overhead of frequent memory allocation and deallocation.
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4.3.2 RPC Consolidation

With RPC consolidation, multiple representatives can be transferred in bulk from the same
remote rehearsal buffer, reducing the number of required RPCs. This is useful in cases where
multiple representatives need to be sampled from a given rehearsal buffer. By consolidating
these transfers into a single RPC, we can improve overall performance and reduce network
overhead. In this way, each client samples r representatives from other processes to prepare
its augmented minibatch, but issues a maximum of r RPCs for global sampling. For a given it-
eration, the maximum number of r RPCs is reached when each representative is sampled from
a different rehearsal buffer.

Specifically, the dispatch_rpcs() function detailed in Table 4.2 generates a list of r indices
corresponding to global indices in the distributed rehearsal buffer. A single RPC is then dis-
patched in the event that two or more indices correspond to the same remote node. In this
scenario, dispatch_rpc() transmits to the remote node, in addition to the local indices, an off-
set corresponding to the client’s exposed memory slots it should write into when exploiting an
RDMA transfer.

4.3.3 Leveraging Page-locked Buffers for Efficient Data Transfers

In our implementation, rehearsal buffers are stored in host memory, and original mini-
batches used to accumulate representative training samples are residing on the GPU. Host data
allocations are pageable by default, and the GPU cannot access data directly from pageable
host memory. Consequently, when a data transfer from device memory to pageable host mem-
ory is initiated (or vice versa), the CUDA driver must first allocate a temporary page-locked, or
“pinned” buffer [139]. It then copies the device data to this buffer and subsequently transfers
the data from the buffer to hostmemory, where representatives eventually reside. One can avoid
the cost of data transfers between device and pageable memory by directly allocating rehearsal
buffers in pinned memory.

Similarly, on the server side, the get_representatives() procedure returns training sam-
ples in bulk using RDMA, writing them directly into an exposed memory buffer on the client
side. Such representatives (r in total) are then copied into the augmented minibatch to pre-
pare via copy_buffer_to_batch(), as detailed in Table 4.3. As augmentedminibatches are pre-
allocated in Python, and already moved onto the GPU, this copy implies a data transfer from
the host memory to the GPU. For this reason, exposed memory buffers used for RPC consoli-
dation are pinned for buffering representatives in an overlapping fashion with the application
execution.
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In this chapter, we presented Neomem, an efficient implementation of rehearsal-
based continual learning. The architecture consists of multiple Neomem instances,
each acting as both a client and a server, providing services to interactwith rehearsal
buffers through Remote Procedure Calls (RPCs). Neomem is built on top of the
Mochi framework and leverages high-performance network transports, backends,
and techniques such as RDMA. We described the general design principles, asyn-
chronous techniques, and optimizations in data movements used in Neomem. Our
implementation is publicly available as a C++ open-source project, and we also
provide a Python codebase for managing the Continual Learning setting. Neomem
achieves efficient buffer management by using multi-threaded concurrency, non-
blocking RPCs, asynchronous CUDA copies, and I/O optimizations in data move-
ments. These techniques enableNeomem toprovide a high-performance implemen-
tation of rehearsal-based continual learning in the context of data-parallel train-
ing, which we believe presents an opportunity for specialized data management
techniques that are applicable to a broad class of rehearsal approaches. To our best
knowledge, such HPC-oriented aspects aimed at improving training performance
of continual learning workloads were not explored before.

Conclusion
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In this chapter, we present the experimental validation of our proposal for rehearsal-based
continual learning using a synthetic benchmark. Our focus is on evaluating the performance
and scalability of our approach for classification problems. We aim to answer several ques-
tions related to the impact of rehearsal-related hyperparameters, accuracy degradation, training
time, and memory cost of our proposal. To achieve this, we use the medium-scale ImageNet-
1K dataset and focus on the class-incremental scenario. We use three different convolutional
networks to demonstrate the model-agnostic nature of our approach.

We summarize the contributions of this chapter as follows:
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— We present our experimental setup and methodology in detail (Section 5.1).
— Next, we present results addressing three research questions related to the impact of

rehearsal buffer size, other rehearsal-related hyperparameters, and a comparison with
baseline approaches for three different neural network architectures (Section 5.2).

— Finally, we discuss our experimental results, focusing on the impact of rehearsal buffer
size, hyperparameter search, and efficiency at scale (Section 5.3).

The results illustrate the benefits of a distributed buffer for continual learning in combination
with data-parallel training.

5.1 Experimental Setup and Methodology

In this section, we define our continual learning scenario and introduce the performance
metrics used in our study, emphasizing the use of larger datasets than typically found in con-
tinual learning experiments and the introduction of distribution shifts within this context.

5.1.1 Training Dataset & Continual Learning Scenario

As discussed in Section 2.4.1, we aim to evaluate not only the accuracy but also the training
time of models, which is why we utilize parallelization techniques that are particularly benefi-
cial in a distributed context. However, the current literature on Continual Learning primarily
focuses on single-node experiments using small-scale datasets such as split-MNIST [66], split-
CIFAR [68], or mini-ImageNet [140], which may not accurately represent the complexity of
real-world data. As a result, we seek to explore the use of larger and more complex datasets
in our study. Over the past decade, ImageNet [141] has been a highly influential benchmark in
the advancement of machine learning research. Significant improvements have been achieved
in terms of the accuracy of image classification models using it. Thus, we use this medium-scale
dataset in our Continual Learning scenario, containing 1.2M training images split among 1000
classes (ImageNet-1K). Specifically, we use the variant with face-blurred images [142]. Each
class contains about 1300 training and 50 validation samples. We use standard data augmen-
tations of random horizontal flips and crops resized at 224x224 pixels as done in [143]. This
method allows to reduce overfitting by artificially enlarging the dataset using label-preserving,
visual transformations. Such augmentations on images require very little computation.

In this dissertation, we focus on the class-incremental (“Class-IL”) scenario (several Contin-
ual Learning scenarios are discussed in Section 2.2.3), as it is more general and more realistic
than other settings [144, 76]. In this scenario, the model is required to incrementally learn
to differentiate between an increasing number of classes. A typical setup for this scenario
involves a sequence of classification-based tasks, with each task containing different classes.
The algorithm must learn to distinguish between all classes, without the information of which
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task this class was observed on at inference time. Unlike task and domain-incremental learn-
ing (“Task-IL” and “Domain-IL” scenarios), where the model is not expected to differentiate
between classes from different tasks, this is required in class-incremental learning. One of the
main challenges in this scenario is learning to distinguish between classes that are not observed
together in the same task, which has proven to be very challenging for deep neural networks, as
reported in a comprehensive study about Class-IL scenarios [145]. This challenging setting will
allow us to thoroughly evaluate the strengths andweaknesses of our rehearsal-based approach.
Thus, we design a sequence of four disjoint tasks, each containing 250 classes from ImageNet-
1K. Each task is revisited 30 times, resulting in a total of 120 training epochs, and the model is
not allowed to revisit previous tasks i.e., tasks are made available sequentially. The number of
tasks in the continual learning scenario is denoted T .

5.1.2 Learning Models

To show that our rehearsal-based approach to CL is model-agnostic, we use the three fol-
lowing convolutional networks and their corresponding configurations:

— ResNet-50 [104] is a convolutional neural network (CNN) architecture that is widely
used for image classification tasks. The ResNet-50 architecture is based on the concept
of residual learning, which aims to address the problem of vanishing gradients in deep
neural networks (discussed in Section 2.2.2 paragraph 5). The idea is to add skip con-
nections between layers, allowing gradients to be directly backpropagated to earlier lay-
ers. Overall, ResNet-50 has 1 convolutional layer, 48 identity/convolutional blocks, and
1 fully connected layer, for a total of 50 layers and about 25.6M trainable parameters. We
select this DLmodel for our study because it has long been the standard on the ImageNet
benchmark, and is still being improved upon [146, 147]. Besides, the ResNet architecture
exhibits a high compute to memory ratio thanks to relatively small activations (compu-
tation is oftenmemory-bound inmodern datacenters [148]). This allows for fast training
iterations [146], providing an excellent opportunity to test the performance of the dis-
tributed buffer, giving it less time to prepare augmented minibatches.

— ResNet-18 [104] is a CNNarchitecture that is a smaller version of the ResNet-50 architec-
ture. Overall, ResNet-18 has 18 layers, including 16 convolutional layers, 1 max pooling
layer, and 1 global average pooling layer. ResNet-18 has roughly half the number of pa-
rameters of ResNet-50 and is thus faster to train (i.e., its minibatch processing time is
shorter). The parameter count does not always determine memory usage during train-
ing since the size of the activations often dominates the memory consumption. Nonethe-
less, ResNet-18’s smaller parameter count still leads to faster training times and reduced
memory usage compared to ResNet-50.

— GhostNet-50 [149] is a lightweight CNN architecture designed to be computationally
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efficient while still achieving high accuracy on image classification tasks. The GhostNet
architecture is based on the concept of Ghost module, which is a more recent type of
convolutional layer that generates more feature maps from cheap operations. The Ghost
module consists of two parts: a primary convolutional layer and a set of cheap linear
transformations. Overall, GhostNet-50 has 50 layers, including 1 convolutional layer, 48
Ghost modules, and 1 fully connected layer. We choose this DL model to show that the
benefits of the distributed buffer are model agnostic.

We use the cross-entropy loss as each task is a 250-way classification problem.

5.1.3 Training Procedure at Scale

As extensively discussed in Section 2.3.2, in the minibatch SGD algorithm, the input data
is divided into minibatches containing b samples each. In a data-parallel setting involving p

training processes, the effective batch size B = p× b represents the global batch size, resulting
from the summation of local minibatches. The main challenge with data parallelism is manag-
ing large effective minibatch sizes, as they can impact the model’s ability to generalize well to
unseen data, as noted in [107]. Using ResNet-50 and the ImageNet-1K dataset, authors in [108]
have successfully increased the effective batch size to 8K samples by implementing various ad-
justments to the training procedure. We incorporate three of their key strategies into our study:
(R1) the learning rate η is scaled with the minibatch size b; (R2) a learning rate (LR) schedule
is used to decrease the LR over time; and (R3) an appropriate warmup strategy is implemented
as part of the LR schedule to avoid optimization difficulties during the early stages of training.

Specifically, we address (R1) by applying the linear scaling rule [108] stating that the learn-
ing rate should be multiplied with the number of processes p. For a minibatch size set to b = 56
and an augmented minibatch size set to b + r = 63 training samples, this rule yields to an effec-
tive batch size of B = p× 63 in a data-parallel setting. Thus, the latter becomes greater than 8K
with p = 128. This requires further consideration to mitigate the instability introduced by such
large batches [108, 150]. We do so by setting a maximum scaling factor (independent of the
number of processes) equal to 64, as suggested theoretically in [151]. Regarding (R2), a unique
aspect of our continual learning scenario is the requirement to learn from four sequential tasks.
This necessitates to accommodate the sequential nature of the tasks. Empirically, we determi-
nate that applying the LR schedule independently to each new task —effectively restarting the
schedule from scratch for each task— yields optimal results. As a result, the LR is decayed sev-
eral times during training, so as to draw several plateaus where the LR remains constant for
several epochs. Finally, we address (R3) by gradually increasing the LR over the first 5 epochs
of each task, progressively approaching the target “base” LR η. Following the warmup period,
we revert to the original LR schedule as detailed in (R2).

We sum up the training procedure as follows, recalling that the DL model learns by per-
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forming 30 epochs on each task:
— ResNet architecture: we use the SGD optimizer with a learning rate η = 0.0125; a per-

task learning rate increase on 5 warmup epochs as in [108]; a gradual decay it from 0.5
to 0.05 to 0.01 at epochs 21, 26 and 28 respectively; and a weight decay of 1e-5.

— GhostNet architecture: we use the SGD optimizer with a learning rate η = 0.01; the
same warmup as ResNet’s; the same schedule at epochs 15, 21, 28; and a weight decay of
1.5e-5.

We enable AutomatedMixed Precision (AMP) introduced in [152] to speed up the training.
This optimization has a direct impact on the evaluation of our distributed buffer, as individual
training iterations are shortened, giving it less time to prepare augmented minibatches.

5.1.4 Performance Metrics

When assessing performance in a continual learning scenario, two critical questionsmust be
addressed: (Q1) how to evaluate the accuracy of the model being trained, and Q2) when to eval-
uate it. Regarding (Q1), continual learning performance is typically evaluated using the average
evaluation accuracy over the sequence of past and current tasks trained thus far. To determine
the evaluation accuracy achieved by the model, we employ a validation set, which is a subset of
the dataset not seen during training. Regarding (Q2), the timing of the evaluation, one approach
is to assess the model only at the conclusion of training on all tasks. However, this method ob-
scures the specific advantage of continual learning, which is the ability to have a model ready
to run inferences on classes already observed at any point during training. Therefore, a more
preferred approach is to evaluate performance periodically throughout the training procedure
by interleaving training and evaluation stages. For instance, performance can be evaluated after
completing training on each task, after every epoch, or after a fixed number of training steps
i.e., multiple times per epoch.

For our performance evaluation,we opt to use the top-5 evaluation accuracymetric, reported
after each training epoch on the validation set. Top-5 accuracy means any of the model’s top 5
highest probability predictions is considered as correct. Let aj,t denote the top-5 evaluation ac-
curacy achieved on task j when using the current snapshot of the model while learning task
t, with t ≥ j. The accuracy (fraction of correct classifications) assessing the DL model perfor-
mance on all previous tasks is defined as follows:

acct = 1
t

t∑
j=1

aj,t (5.1)

When training on task t, value acct can be calculated many times if the evaluation perfor-
mance is reported after each training step or epoch, and doesn’t change anymore when the
training procedure proceeds with task t + 1. In other words, computing acct more often than
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once at the end of the current task t would produce a list of accuracy values At represented as:

At = [acc1
t , acc2

t , ..., accn
t ] (5.2)

Here, n denotes the total number of times the accuracy is reported during the training on
task t i.e., n = epochs if the metric is reported after each epoch. It is worth noting that the ML
communityworking on computer vision usually relies on the top-1 (instead of top-5) evaluation
accuracy. However, we are primarily interested in showing that accuracy is greatly improved
by leveraging Experience Replay, rather than showing absolute figures tied to a specific use-
case (e.g., our sequence of four tasks). Thus, any accuracy metric is deemed appropriate. More
broadly, the novelty of our work lies in the techniques to make rehearsal scalable in the context
of data-parallel training.

Reporting evaluation accuracy is necessary to quantify model quality. However, we are also
interested in the benefits brought by continual learning and parallelization techniques in terms
of training time. We therefore report it in minutes. In particular, we want to examine whether
our distributed buffer slows down the training procedure.

5.1.5 Computing Environment

In order to conduct our experiments, we utilize up to 16 nodes of the ThetaGPU super-
computer at Argonne National Laboratory, providing a total of 128 NVIDIA A100 GPUs, each
with 40 GB of memory. Each node is equipped with two AMD Rome CPUs. The software envi-
ronment used in our study includes Python 3.10, PyTorch 1.13.1, Horovod 0.28.1, CUDA 11.4,
NVIDIA DALI 1.27.0, OpenMPI 4.1.4, Mercury 3.3, and libfabric 1.16, with CUDA support en-
abled during compilation.

5.2 Experiments and Results

Our series of experiments focuses on evaluating the performance and the scalability of our
proposal for classification problems. To this end, we aim to answer the following questions:

— How do parameters r (representative count used to augment minibatches) and |Bn| (lo-
cal rehearsal buffer size) impact the achieved classification accuracy?

— How much does accuracy degrade with CL, compared to the case where the model re-
learns from scratch each time new data arrives?

— Do minibatch augmentations and rehearsal buffer management increase training time?
— How much does training time increase, compared to incremental training?
— What is the memory cost of rehearsal-based learning?
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5.2.1 Impact of the Rehearsal Buffer Size on Accuracy

As detailed in Section 3.1.2, distributing the training across p processes allows to leverage the
aggregated memory to store more representatives in the rehearsal buffer of size |B| = p× |Bn|.
Sampling representatives globally allows to distribute a certain percentage of the input dataset
over all processes (e.g., storing 10% of the input dataset means in practice storing 10%/p of the
data per training process). Besides, as detailed in Section 3.1.3, we recall that representatives are
distributed amongmemories according to their class labels. Thus, candidate samples belonging
to a specific class compete against the existing representatives of the same class to be retained
in the buffer. In particular, this means that storing a certain proportion of the entire dataset in
the buffer involves storing the same proportion of representatives for each class.

To showcase the effect of different rehearsal buffer sizes on the accuracy, we vary |B| from
2.5%, 5%, 10%, 20%, to 30% of the total number of ImageNet data samples (1.2M images). These
values correspond respectively to 1.93 GB, 3.85 GB, 7.71 GB, 15.41 GB and 23.12 GB of raw data
stored in the aggregated memory.
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Figure 5.1 – Accuracy w.r.t. different rehearsal buffer sizes |B| (percentage of the input dataset).
Each data point is the average of the top-5 accuracy obtained on all previous tasks.

We measure the performance of our approach with different rehearsal buffer sizes by ap-
plying Equation 5.1 once at epoch 120 (conclusion of the training), in order to evaluate the DL
model on all previous tasks i.e., on all the classes seen until then. We only consider ResNet-
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50 for this study, and run these experiments on 2 nodes (16 GPUs). We report the results in
Figure 5.1. As expected, the larger the rehearsal buffer size |B|, the better the diversity among
stored representatives. As a result, themodel forgets less knowledge acquired in previous tasks,
resulting in a higher final accuracy. In our setting, storing 30% of the input data samples as rep-
resentatives yields to a final top-5 accuracy of 80.55%, which is significantly better than the
accuracy achieved with |B| = 2.5% (55.83%). We emphasize that storing 30% of ImageNet sam-
ples amounts to storing 1.45 GB of raw data per process (with p = 16), which is only a fraction
of the memory available on typical HPC systems (512 GB of host memory per compute node).
We set |B| = 30% in the remainder of this chapter.

5.2.2 Impact of Other Rehearsal-related Hyperparameters on Accuracy

The number of training samples used to populate the rehearsal buffer at each iteration (pa-
rameter c introduced in Section 3.1.3) is less relevant in class-incremental scenarios, as: (1)
classes from different tasks are disjoint, and (2) the competition to populate the buffer is done
per class. As a result, representatives from previous tasks never get evicted under this setting.
We set c = 14, which in our experimental setup only affects the renewal rate of representatives
from the current task.

The number of representatives sampled from the rehearsal buffer (parameter r introduced in
Section 3.2) has a direct impact on the balance between plasticity and stability, where the model
should be both plastic enough to learn new concepts, and stable enough to retain knowledge.
Mixing too many representatives with incoming minibatches decreases the ability of the DL
model to learn the current task, resulting in a degraded accuracy. A larger value for r favors
stability over plasticity. Following an exploration of the hyper-parameter space,we identified the
optimal values for maximizing accuracy, namely, a minibatch size of b = 56 and a representative
count of r = 7.

5.2.3 Comparison with Baseline Approaches

The following baselines instantiate models without any rehearsal of representatives (r = 0):
— Incremental training: updates themodelwith the trainingdata corresponding to a single

task, one at a time. No training samples of any previous tasks are revisited.
— Training from scratch: re-trains the model from scratch at every new task, using all ac-

cumulated training samples of both the new task and the previous tasks.
The minibatch size is set to b = 56, and we use ResNet-50 in this study. In Figure 5.2, the

top-5 evaluation accuracy achieved by rehearsal (80.55%) greatly outperforms the incremental
training baseline. We apply Equation 5.2 for each task (T = 4) with n = 30 as 30 epochs are
performed on task t. Incremental training suffers from catastrophic forgetting and is regarded
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as the lower bound accuracy-wise (23.3%). On the opposite, training from scratch as new data
arrives is regarded as the upper bound (91%), only about 10.5 percentage points above the
accuracy achievedwith our rehearsal-based approach. This represents a clear improvement over
incremental training, and comes very close to from-scratch training.
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Figure 5.2 – |B| = 30% and r = 7. Left: accuracy w.r.t. epoch number. Our rehearsal-based
approach achieves a final accuracy of 80.55%. Right: training time w.r.t. epoch number. Our
approach induces a small runtime increase compared with incremental training, which stays
linear.

Figure 5.3 – Top-5 accuracy for ResNet-50, 16 GPUs, ImageNet (4 tasks).

In Figure 5.2, we observe that incremental training has the shortest runtime as no task gets
revisited (lower bound). On the other hand, the duration of training from scratch increases
cubically with the number of tasks to learn T (sum of the first T triangular numbers). This is
noticeable as a large gap between the two approaches as the number of tasks increases. Just like
incremental training, our rehearsal-based approach exhibits a linear runtime with just a slight
increase proportional to the r additional samples added to the minibatch. We demonstrate in
the next section that this overhead is not introduced by the rehearsal buffer management itself.
Thus, we conclude that our approach represents a substantial improvement over incremental
training and approaches the performance of from-scratch training, demonstrating the effective-
ness of our method in balancing between the two baselines. This allows to overcome the limita-
tions of the baseline approaches, which sacrifices accuracy for scalability or vice versa.

5.2.4 Rehearsal Buffer Management Breakdown

In Figure 5.4 we examine the time taken for the individual operations within a training iter-
ation. This study allows us to understand how well our approach overlaps the rehearsal buffer
management with the actual training procedure.
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Figure 5.4 – Time breakdown for the training loop and rehearsal buffer management, for each
of the threemodels and for different number of GPUs, averaged across 35minibatches. Training
iterations sometimes take longer as the time required for communication and synchronization
between GPUs increases with their number. Non-linearity can be explained by the topology
of GPU interconnects, as well as other factors such as communication overhead and resource
contention.

Specifically, we measure the time taken to obtain a new minibatch from DALI (denoted
Load), which itself uses an asynchronous data pipeline that prefetches and shuffles the train-
ing data. Then, we measure the duration of the forward and backward passes as reported by
PyTorch (denoted Train). The time taken for Load followed by Train is the lowest possible over-
head perceived by the application; this time is represented by the stacked bars on the left of
each of the 11 pairs of data bars in Figure 5.4. In the background, our approach handles up-
dates to the individual rehearsal buffers (denoted Populate buffer), the distributed sampling of
the remote rehearsal buffers, and the minibatch augmentation (denoted Augment batch); this
time is represented by the right-hand stacked bars in the figure. As long as the stacked bars on
the right are lower than those on the left, our approach will not cause the training iterations to
wait for the augmented minibatches. This means there is a full overlap and the rehearsal buffer
management is completely hidden in the background thanks to our asynchronous techniques.

Indeed, we observe that this condition holds for all models and all scales used in our experi-
ments i.e., the duration of managing the rehearsal buffer is constant in all settings. Furthermore,
the total overhead of our approach is just a fraction of the Load and Train overheads. Since the
Train overhead dominates (thanks to DALI’s asynchronous data pipeline), we conclude that
there is a large margin left to optimize the forward and backward passes without reducing the
effectiveness of our approach.

Another interesting effect is visible: we cannot simply reduce the duration of the forward
pass and backward pass at scale by optimizing the computations.Whenwe switch fromResNet-
50 to ResNet-18, which is significantly less computationally expensive to train, the duration
of Train increases because allreduce gradient reductions are expensive and begin to stall the
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Figure 5.5 – Accuracy and runtime, |B| = 30%, b = 56 and r = 7 for all 3 models. For ResNet-50,
colors match those in Fig. 5.2.

computations. This observation illustrates that the overall training time does not decrease pro-
portionally with the number of GPUs. However, in a data-parallel setting, the amount of data
processed at every iteration is proportional to the number of GPUs. This means that as the num-
ber of GPUs increases, the amount of data processed per iteration also increases, which leads to
a decrease in the number of iterations required to achieve the same level of accuracy. As long as
the decrease in the number of iterations is greater than the increase in the duration per iteration,
there will be a speed-up in the training time. Thus, based on the observed trends, we hypothe-
size that our approach remains effective at scale even in extreme cases of computationally trivial
models.

Please note that the durations obtained in this experiment are not indicative of the entire
training procedure but rather reflect a subset of minibatches observed during the first epoch.
While this allows us to conclude that buffer management does not impede training, one can not
predict total training time from this observation made at very low level.

5.2.5 Scalability Study

We study the scalability of our approach for all three models compared with the two base-
lines for an increasing the number of data-parallel processes (GPUs). Specifically, we measure

87



Chapter 5 – Experimental Evaluation using a Synthetic Benchmark

the final evaluation top-5 accuracy for an increasing number of processes in Figure 5.5a, where
Equation 5.1 is applied once at epoch 120. We also measure the overall runtime to train all tasks
and depict it in Figure 5.5b.

All three approaches retain similar accuracy for an increasing number of processes. Since
incremental training and training from scratch make direct use of data parallelism, this finding
is not surprising. On the other hand, the same trend is visible for our approach, which demon-
strates that it applies global sampling correctly at scale and therefore avoids potential biases.
Furthermore, all approaches exhibit shorter runtimes for increasing numbers of data-parallel
processes. What is interesting to observe though is that the gap between our approach and in-
cremental training does not increase with the number of processes. Instead, the gap is decreas-
ing, which shows that our approach is scalable and can successfully overlap the asynchronous
updates of the rehearsal buffer and the global sampling with the training iterations, even when
the all-to-all communication complexity increases, as we noted in Section 5.2.4.

Visually on Figure 5.5b, one can notice that the scaling efficiency exhibited by ResNet-18 is
inferior to that of ResNet-50. Specifically, the decrease in training time expected when using
more GPUs is less pronounced for ResNet-18. In fact, training ResNet-18 for 120 epochs on 128
GPUs requiresmore time than training ResNet-50 under identical conditions. This phenomenon
can be attributed to several factors, independent of rehearsal:

— As illustrated in Figure 5.4, the duration of individual training iterations increases with
the number of processes due to longer communication times required by the synchro-
nization of a greater number of model replicas. The communication overhead incurred
by gradient exchange becomes a significant bottleneck at scale, and is detrimental to scal-
ing efficiency. For smaller models like ResNet-18, the ratio of communication to compu-
tation time is higher. Although Figure 5.4 depicts only minibatches of the first epoch and
is not representative of the entire training procedure, it can be observed that the aver-
age duration of an individual iteration of ResNet-18 approaches that of ResNet-50 when
using 128 GPUs.

— When communication time dominates the duration of an iteration, it can induce a stalling
effect on computation. In such cases, the suboptimal overlap of communication and com-
putation results in extended training times.

— ResNet-50 is a deeper and more complex model compared to ResNet-18. It has more
layers and parameters, which means it has a higher computational load per minibatch.
This higher computational load can better leverage the parallel processing capabilities of
multiple GPUs, leading to better GPU utilization and scaling efficiency.

Thanks to the asynchronous rehearsal management, the average training time of our ap-
proach is only determined by the r additional representatives assembled into augmented mini-
batches at every iteration, as shown in Section 5.2.4. Thus, the runtime of rehearsal-based CL is
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roughly proportional to r.

5.3 Discussion

In this section, we draw conclusions from our evaluation and highlight the strengths of the
rehearsal-based approach to continual learning.

5.3.1 Experience Replay is a Strong Approach

Only by replaying a subset of training samples assembled into the augmented minibatches
(r = 7), our rehearsal-based approach significantly surpasses the incremental training baseline
by achieving a top-5 evaluation accuracy of 80.55%, approaching the upper bound of 91% at-
tained by training from scratch as new data arrives. Rehearsal seems to prevent the DL model
from leaving the first found low-loss region, effectively mitigating catastrophic forgetting. De-
spite its conceptual simplicity, we conclude that Experience Replay is a very promising direction
for large scale CL. Similar findings were reported by [72] but on small-scale CL datasets like
split-CIFAR and mini-ImageNet, which are less realistic and less diverse. Authors in [73] draw
the same conclusion on the larger Taskonomy dataset [153]. The benefits of Experience Replay
on the accuracy are tangible even on very small rehearsal buffers [72], when they are populated
with a single representative per class.

5.3.2 The Rehearsal Buffer Size Matters

The two studies cited above [72, 73], among others, already made the unsurprising obser-
vation that a larger rehearsal buffer leads to a better achieved accuracy. Our results confirm this
observation. The study varied the rehearsal buffer size from 2.5% to 30% of the total number
of ImageNet data samples and found that storing 30% of the input data samples as represen-
tatives yielded a final top-5 accuracy of 80.55%, which is significantly better than the accuracy
achievedwith a smaller buffer size. A larger buffer size |B| enables amore diverse and extensive
representation of previously encountered tasks.

Storage of a significant part of a large dataset like ImageNet is made possible by our dis-
tributed buffer. The accumulation of representatives may grow to very large sizes, but our ap-
proach aggregates the free memory on the compute nodes in a scalable fashion. Specifically,
given only a fraction of the host memory on each compute node (1 GB in our experiments),
our approach was capable of storing 30% of the ImageNet dataset even at medium scale (128
GPUs). Furthermore, this amount of free memory can be calculated in advance as it is bounded
w.r.t. the number of classes K and many additional data reduction techniques can be applied
if necessary (e.g., compression). Authors in [82] suspect that training repeatedly over a limited
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number of representativeswould lead to overfitting the rehearsal buffer, whichmay be an inher-
ent limitation of CL by being harmful for generalization. Indeed, large DLmodels are capable of
memorizing small amounts of data, such as those in rehearsal buffers retaining a limited num-
ber of representatives, without developing any generalization capabilities [129]. In this regard,
our approach of using a distributed rehearsal buffer allows the aggregated size to grow pro-
portionally with the number of training processes. While this approach does not eliminate the
problem of overfitting per se, it mitigates the issue by enabling retention of a larger andmore di-
verse set of representatives. This increases the quality of continual learning in combinationwith
data-parallel training, pushing the limits acknowledged by other state-of-the-art approaches.

5.3.3 Rehearsal as a Trade-off Between Incremental and From-scratch Training

Rehearsal-based continual learning strikes a balance between incremental training and train-
ing from scratch, with hyperparameters |B| and r playing a crucial role in setting this trade-off.
Both the size of the rehearsal buffer and the number of representatives assembled into aug-
mented minibatches determine the degree to which the model relies on previous knowledge
versus adapting to new information. In the extreme case where the buffer size |B| is set to in-
finity and minibatches are augmented with all the buffer content throughout a given epoch,
the rehearsal-based approach would tend towards the performance of training from scratch.
However, even under these conditions, rehearsal does not fully replicate training from scratch.
In rehearsal, the diversity of representatives replayed increases as the buffer populates dur-
ing training, whereas in training from scratch, the model has access to the entire dataset from
the outset. Consequently, rehearsal alters the learning dynamics, with a higher probability of
sampling the same representatives frequently early in training when the buffer contains fewer
elements.

5.3.4 Choice of the Performance Metrics

We chose the top-5 evaluation accuracy averaged over all past tasks to assess the perfor-
mance of our approach. As noted in [67], comparing continual learning methods solely based
on such average performance can be misleading, as it fails to capture how well catastrophic for-
getting is mitigated. For instance, a rigid model that achieves 100% accuracy on the first task
and 0% accuracy on the second task has the same average performance as a plastic model with
0% accuracy on the first task and 100% accuracy on the second task. To gain deeper insights into
the dynamics of continual learning, other performance metrics have been proposed. We plan to
report them in future work.

One such metric is the performance drop [73] on task t, which aims at measuring plasticity
of the model by quantifying its performance gap with the model obtained with from-scratch
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training on all tasks, and then evaluated on task t. Another widely-used metric is backward
transfer [19], which measures how the performance on previously learned tasks changes when
training on new ones. In particular, a positive backward transfer is achieved when the model
improves the performance on a previous task j when learning task t, with t ≥ j. This metric
provides insights into the degree of catastrophic forgetting and the stability of the model: a
large negative backward transfer yields to more catastrophic forgetting. This measure is some-
times referred to as forgetting [73], which represents the average loss increase of themodel when
evaluated on previous tasks, when compared to the performance that was obtained at the time
of learning such tasks. Additionally, forward transfer [19] is a metric that quantifies how much
training on previous tasks improves the performance of a model on future tasks. In particular, a
positive forward transfer is achievedwhen themodel is able to perform zero-shot learning [154].

5.3.5 The Need for Hyperparameter Optimization

To achieve optimal performance, it is essential to perform an hyperparameter search to find
the best combination of parameters such as minibatch size b, LR schedule, or weight decay. The
cost of computation required for this procedure is an important factor that should be reported.
We carried out this procedure using 8 GPUs of the Grid’5000 testbed [155]. Once model conver-
gence has been ensured in this small-scale setting, we simulated a gradual transition to larger
scales using gradient accumulation [156]. This technique allows the model to perform multiple
backward passes before updating its parameters all at once for multiple minibatches. This is un-
like the conventional manner where the model parameters are updated once every minibatch,
simulating the larger effective batch size that would result from training on more processes.
To simulate training on p = 128 processes from 8 physical GPUs, 16 accumulation steps are
required. This stage took about 1500 GPU-hours using NVIDIA V100s.

Our study found that the rehearsal-related hyperparameter |B| had a significant impact on
the achieved accuracy. However, 8 GPUs do not allow to accumulate more than 1% of the Ima-
geNet dataset. We therefore launched a new hyperparameter search for b and r with the buffer
size |B| set to 1%. This stage took about 400 GPU-hours. Then, we were able to run our ex-
periments on ThetaGPU (a machine with more memory, benefiting our distributed buffer) to
demonstrate the advantages of a larger buffer as illustrated in Figure 5.1. The hyperparameters
resulting from this search procedure have been used in Figures 5.5a and 5.5b.

The discovered hyperparameters generalize to ResNet and GhostNet architectures, showing
that our approach is applicable to different DL models. Although we have not run any experi-
ments to confirm this, we suspect that the optimal value of rehearsal-related hyperparameters
depends strongly on the number of tasks T to be learned.
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In our proposal, we aim to address the challenges of continual learning in the con-
text of data-parallel training by designing and implementing a distributed rehearsal
buffer. Our approach handles the selection of representative samples and the aug-
mentation ofminibatches asynchronously in the background, enabling efficient and
scalable training on HPC systems. To evaluate the performance and scalability of
our proposal, we conduct a comprehensive series of experiments focusing on a clas-
sification problem. We utilize up to 128 GPUs of the ThetaGPU supercomputer to
compare our approach with two baselines: from-scratch training, which serves as
the upper bound in terms of accuracy, and incremental training, which represents
the lower bound. As a notable result, in the best case with ResNet-50, our method
improves the top-5 classification accuracy from 23.1% to 80.55%, with just a small
runtime increase—an ideal trade-off that combines the best of both baselines used
in the comparison. In addition, we ensure that buffer management does not impede
training iterations.We conclude that Experience Replay is a strong approach tomiti-
gating catastrophic forgetting, with applicability across variousmodel architectures
and training scales. Furthermore, while there is a positive correlation between the
distributed buffer’s aggregated capacity and achievable accuracy, the latter plateaus
after reaching a certain memory threshold.

Conclusion
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In this chapter,we explore the concept of generic rehearsal buffers that can store, sample, and
replace heterogeneous data independent from both the learning task and the rehearsal strategy.
We aim to create a buffer that seamlessly integrates with the data pipeline and can exchange
fine-grain data (as tensors) a global level using scalable distributed techniques to avoid biases
introduced by localized sampling. The chapter is organized into two main sections:

— We discuss the importance of decoupling the rehearsal buffer from the learning task and
present an extension, enabling it to store heterogeneous data and serve it in the form of
annotated tuples of tensors (Section 6.1).

— Then, we demonstrate the generality of our approach by integrating functional regu-
larization algorithms based on knowledge distillation. As such, we implement Dark
Experience Replay and Dark Experience Replay++ [25] and discuss the improvements
offered over vanilla Experience Replay (Section 6.2).

6.1 Decoupling Buffer Management from the Learning Task

In this section, we show how enabling the rehearsal buffer to store heterogeneous data, and
serve it in the form of annotated tuples of tensors, allows for flexible integration with different
rehearsal and functional regularization strategies.
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6.1.1 Supporting More Rehearsal Strategies and Learning Tasks

Thus far in this dissertation, we have designed the rehearsal buffer to store representatives
organized by class, in the form of input-label (x, y) tuples. Besides, the validation of our ap-
proach in Chapter 5 was carried out on a classification problem, leveraging Experience Replay
as the rehearsal strategy. We have identified two main levers to make our proposal support
more deep learning use cases and continual learning approaches: (1) allow the enrichment of
tuples (x, y) exposed to the AI runtime with additional state information in order to accommo-
date more rehearsal strategies, and (2) make the per-class management of representatives more
flexible to support more learning tasks like generative workloads, in which the output space is
flat i.e., all outputs belong to a single class.

In the light of these newelements,we redefine themain properties needed for the distributed
rehearsal buffer: (1) the rehearsal buffer needs to store, sample and replace heterogeneous data
that is independent from the rehearsal strategy (e.g., storing additional state information to-
gether with the training samples), and serve it conveniently to the training loop using anno-
tated tuples; (2) the buffer’s internal data layout should be flexible enough to accommodate
different learning tasks (e.g., separate per-class management of training samples in the case of
classification tasks vs. unified management of training samples in the case of generative tasks).
Performance optimizations introduced to date should be leveraged too: (3) the rehearsal buffer
needs to seamlessly integrate with the data pipeline responsible for asynchronously reading the
training data and feeding it to the training iterations, which implies the need to transparently
overlap the management of the rehearsal buffer with both the data pipeline and the training it-
erations; and (4) it is not enough to simply instantiate independent rehearsal buffers associated
with each DLmodel replica to enable data parallelism, as extensively discussed in Section 3.2.1.
Scalable distributed techniques are needed to enable rehearsal buffers to collaborate at global
level in order to avoid biases introduced by localized sampling.

6.1.2 Extending Rehearsal with Additional States

With the growing diversity of rehearsal techniques discussed in Section 2.2.4, it becomes im-
portant to decouple the rehearsal buffer from the learning task, such that it becomes a generic
abstraction that can store additional state information as needed by more advanced continual
learning algorithms. Besides, as discussed in Section 2.2.4, the line between rehearsal and func-
tional regularization algorithms is blur, as the latter can sometimes be seen as a variant of the
former. Instead of replaying raw inputs alongside the corresponding label, functional regular-
ization leverages past anchor points labeled with the corresponding predictions as made by a
previous version of the model. Such predictions can be stored in the rehearsal buffer as addi-
tional states. For instance, the Hindsight Anchor Learning (HAL) [88] algorithm complements
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Experience Replay with regularization to align the model responses with representatives en-
coding classes encountered in previous tasks.

Additional information is stored in separate local buffers, using the same structure as for
representative training samples. Conceptually, this amounts to having two (or more) rehearsal
buffers per processing unit n. Let Bn,i denote the i-th rehearsal buffer for processing unit n,
where i = 1, 2, ..., k. This design provides efficient access to representatives and associated states
under concurrency, both locally and remotely, reusing all optimizations developed in Chap-
ter 4. We extend the rehearsal buffer presented in Section 3.1 to serve heterogeneous data in
the form of annotated tuples of tensors i.e., additional state data in buffers Bn,i, i ≥ 2 enrich
tuples (x, y, . . .) exposed to the AI runtime. Such tensors to be served in an annotated tuple are
transferred in separate bulks, albeit all attached to the same RPC. This optimization limits the
number of RPCs issued by each training process to r, independently from the number of com-
ponents in the annotated tuple. In addition, the asynchronous CUDA copies produced for each
additional state are carried out in dedicated CUDA streams.

6.2 Illustration Leveraging Knowledge Distillation

In this section, we present an enhanced distributed rehearsal buffer and integrate an Expe-
rience Replay strategy leveraging knowledge distillation, Dark Experience Replay [25].

6.2.1 Integrating Dark Experience Replay

Instead of replaying raw training data samples as representatives, some variants of rehearsal
leveraging knowledge distillation have been explored in the CL literature. The authors in [25] pro-
poseDark Experience Replay (DER), an algorithm applying the teacher-student approach [157]
to encourage the DL model to mimic the neural activations triggered when learning previous
tasks. Activations refer to the raw, unnormalized output values produced by the neural net-
work’s final layer, typically a fully connected layer. These activations (also referred to as logits),
denoted a, are then passed through an activation function, such as the softmax function, to
obtain the probabilities for each class in a classification task.

This state information a is stored in the rehearsal buffer alongside the associated represen-
tative sample x. Activations cannot be dissociated from the sample that produced them. Dur-
ing the training procedure, differently from vanilla Experience Replay, DER does not sample
input-label (x, y) tuples from the rehearsal buffer but instead input-activation (x, a) tuples cor-
responding to previous tasks. In that sense, DER still benefits from the transparent global sam-
pling of representatives detailed in Section 3.2. However, past data samples are not reinjected
into the training process through augmented minibatches; past and current activations are sim-
ply compared when calculating the loss to promote their consistency, thus benefiting from the
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knowledge encapsulated by the former (which acts as a teacher). Using the same notation as
in [25], we indicate the neural activations with hw(x) and fw(x) ≜ softmax(hw(x)). The loss
function is extended with an additional distillation term minimizing the Euclidian distance be-
tween past activations a and current activations hw(x) for the associated representative sample
x:

Ltc + α · E(x,a)∼B
[
∥a− hw(x)∥22

]
(6.1)

where α is a hyper-parameter introduced by DER setting the importance of the distillation
term. Note that no rehearsal is performedwith DER i.e., no backward pass is performed on past
representatives. However, sampling activations associated to a past representative x from the
distributed rehearsal buffer is still required, as they are compared with activations computed
for x using the current model w. As such, the training procedure is not modified beyond a
slight adjustment to the loss function, which is complemented by the regularization term from
Equation 6.1.

Intuitively, activations a corresponding to a past representative x become outdated while
learning new tasks, as (1) they are potentially different from those observed at the task’s local
minimum, and (2) backward transfer could impact past tasks positively in some cases (positive
and negative backward transfers were discussed in Section 5.1.4). However, the authors of [25]
observed that this selection strategy occurring along the optimization trajectory i.e., during the
training procedure does not degrade the achieved accuracy. When using the selection policy of
representatives introduced in Section 3.1.3, c candidate input-activation tuples are pushed into
the rehearsal buffer at every training iteration, with the competition still being done per class.
In CL scenarios where some classes are observed across multiple tasks, this allows to update
activations gradually over time.

Algorithm 5: Training loop implementing Dark Experience Replay (adapted from the
original implementation [25]).
1 B ← {}
2 for k = 0 to |D|

b · epochs do
3 (x, y)← m⃗← sample(D,b) // Obtain b samples from dataset D
4 a← hw(x) // Compute output activations
5 (x′, y′, a′)← get_representatives(B, r) // Obtain r samples from B
6 dis← α · ∥a′ − hw(x′)∥22 // Compute distillation term
7 gm ← ∇[ℓ(fw(k)(x), y) + dis] // Compute gradient using backpropagation
8 w(k+1) ← w(k) + uGD(gm) // Weight update rule
9 B ← update_buffer((x, y, a), c) // Update buffer using current activations

Algorithm 5 describes the training procedure as proposed by DER. Variable dis denotes
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the regularization term added by DER. After sampling a minibatch m from dataset D (line 3),
the corresponding neural activations a are computed (line 4). Then, an input-activation tuple is
sampled from the distributed rehearsal buffer (line 5), and the distillation term dis is computed
using the current model parameters w (line 6). An augmented minibatch m′ is also prepared
for rehearsal as detailed in Section 3.2. Finally, model parameters are updated considering the
loss obtained from m′ and dis (line 8) and the distributed rehearsal buffer is updated with new
representatives passed alongside their associated activations (line 9).

With this approach of storing states with representatives, each parallel process n can sample
remote activations thanks to global sampling. Each copy of themodel can therefore reuse neural
activations generated in the past by any replica of the model. This is valid because, in a data-
parallel context, each copy of the model is synchronized after each training iteration.

6.2.2 Integrating Dark Experience Replay++

A natural way to improve over vanilla Experience Replay is to extend it with the main idea
of DER i.e., knowledge distillation. Building on this idea, the authors in [25] propose a variant,
named DER++, leveraging both rehearsal of representatives stored in the buffer and neural
activations in the loss calculation. As such, DER++ optimizes the following objective:

Ltc + α · E(x′,a′)∼B
[
∥a′ − hw(x′)∥22

]
+ β · E(x′′,y′′)∼B[ℓ(fw(x′′), y′′)]. (6.2)

where β is a hyper-parameter introduced by DER++ setting the importance of the rehearsal
term, and (x′′, y′′) is the input-label pair used for rehearsal. Note that DER++ collapses to DER
when β = 0.

Algorithm 6: Training loop implementing Dark Experience Replay++ (adapted from
the original implementation [25]).
1 B ← {}
2 for k = 0 to |D|

b · epochs do
3 (x, y)← m⃗← sample(D,b) // Obtain b samples from dataset D
4 a← hw(x) // Compute output activations
5 (x′, y′, a′)← get_representatives(B, r) // Obtain r samples from B
6 dis← α · ∥a′ − hw(x′)∥22 // Compute distillation term
7 (x′′, y′′, a′′)← m′ ← get_representatives(B, r) // Obtain r samples from B
8 loss← β · ℓ(fw(x′′), y′′) // Forward pass on representatives
9 gm ← ∇[ℓ(fw(k)(x), y) + dis + loss] // Compute gradient
10 w(k+1) ← w(k) + uGD(gm) // Weight update rule
11 B ← update_buffer((x, y, a), c) // Update buffer using current activations

Algorithm6describes the training procedure as proposed byDER++: after sampling amini-
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batch m from dataset D (line 3), the corresponding neural activations a are computed (line 4)
using the current model parameters w. Then, similarly to DER, a tuple containing r input-
activation pairs is sampled from the distributed rehearsal buffer (line 5), and the distillation
term dis is computed using the current model w (line 6). From the rehearsal buffer standpoint,
the additional state information brought by activations is held alongside its associated repre-
sentative training sample, and returned as annotated tuples of tensors (x′, y′, a′). Next, a second
tuple containing r input-output pairs is sampled (line 7) in preparation for rehearsal. A for-
ward pass using these representatives is performed (line 8), whose loss result is weighted by β.
Finally, model parameters are updated considering the loss loss obtained from m′ and dis and
the distributed rehearsal buffer is updated with new representatives passed alongside their as-
sociated activations (line 11).

Algorithm 7: DER++ integrated into the distributed rehearsal buffer
1 B ← {}
2 for k = 0 to |D|

b · epochs do
3 (x, y)← m← sample(D,b) // Obtain b samples from dataset D
4 a← hw(x) // Compute output activations
5 (aug_x, aug_y)← m′ ← augment(m) // Prepare augmented minibatch
6 (x′, y′, a′)← get_representatives(B, r) // Obtain r samples from B
7 dis← α · ∥a′ − hw(x′)∥22 // Compute distillation term
8 gm ← ∇[ℓ(fw(k)(aug_x), aug_y) + dis] // Compute gradient
9 w(k+1) ← w(k) + uGD(gm) // Weight update rule
10 B ← update_buffer((x, y, a), c) // Update buffer using current activations

A limitation of Algorithm 6, implemented as such, is that two separate forward passes are
performed sequentially for rehearsal (the first using representatives at line 8, and the second
using the original minibatch at line 9), hindering the parallelization capabilities of the GPUs.
For this reason, we assemble the originalminibatch and representatives into a single augmented
minibatch (we set β = 1 so that representatives to rehearse do not have a higher weight than
original training samples). Algorithm 7 details the enhanced integration of the DER++ algo-
rithm into our proposal, with the explicit rehearsal term in Equation 6.2 being replaced with a
single forward pass using an augmented minibatch. As such, the augmented minibatch m′ is
prepared for rehearsal on line 5. This operation allows to perform a single forward pass on m′

containing r past representatives (line 8), while still harnessing knowledge distillation as done
with DER when calculating the loss.

We illustrate the simplicity of our proposal for the end-user in Listing 6.1. We reuse the
update() primitive devised in Section 4.1.2, benefiting rehearsal with all asynchronous opti-
mizations introduced in Chapter 3. Not illustrated in this listing, one should also manage swap-
ping pre-allocated augmented minibatches as done in Listing 4.2.
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1 aug_minibatch = preallocate_augmented_minibatch ()
2
3 # Get the first minibatch of the dataset (does not advance the read cursor )
4 (x, y) = DataPipeline . get_first_minibatch ()
5 current_activations = Model. forward (x)
6
7 for i in range( num_steps ):
8 (x, y) = DataPipeline . get_next_minibatch ()
9
10 # Get an annotated tuple of tensors containing representatives and

associated activations from the buffer
11 (x_ , y_ , a_) = RehearsalBuffer . get_representatives ()
12 output = Model. forward (x_)
13 dis = alpha * mse_loss ( output . activations , a_)
14
15 minibatch = (x, y, current_activations )
16
17 # Reuse the update () primitive to (1) pass the current minibatch , and (2)

prepare the next augmented minibatch asynchronously
18 r = RehearsalBuffer . update (minibatch , aug_minibatch )
19
20
21 current_activations = Model.train( aug_minibatch , dis)

Listing 6.1 – Example of a training loop integrating both rehearsal and knowledge distillation,
a form of functional regularization.

By returning annotated tuples allowing arbitrary state information to be served, the dis-
tributed rehearsal buffer offers a high degree of flexibility, making the implementation of more-
advanced CL algorithms straightforward. The training loop is kept short and concise, while
the update() primitive encapsulates the complexity of high-performance techniques likemulti-
threaded concurrency, non-blocking RPCs, asynchronous CUDA copies, and I/O optimizations
in data movements thanks to RDMA-enabled bulk transfers.
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In this chapter, we explored the concept of a generic rehearsal buffers for storing,
sampling, and replacing heterogeneous data to accommodate different rehearsal
strategies. We presented an extension to the buffer enabling it to serve heteroge-
neous data in the formof annotated tuples of tensors.We illustrated the generality of
our approach by integrating learning algorithms leveraging knowledge distillation,
specificallyDarkExperienceReplay andDarkExperienceReplay++, demonstrating
a flexible integration with both rehearsal and functional regularization strategies.
Our proposed buffer seamlessly integrates with the data pipeline and can collab-
orate at a global level using scalable distributed techniques. This design provides
efficient access to representatives and associated states under concurrency, both lo-
cally and remotely, reusing all asynchronous optimizations presented in previous
chapters.

Conclusion
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USE-CASE: THE PTYCHOGRAPHY

APPLICATION

Contents
7.1 Motivating Scenario: Continual Learning in Support of Streaming Applica-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.1 The Need for ML out HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.2 Ptychographic Image Reconstruction . . . . . . . . . . . . . . . . . . . . . 103
7.1.3 DL-enabled Real-Time Ptychographic Reconstruction . . . . . . . . . . . 103
7.1.4 Generative Models and Rehearsal-based Continual Learning . . . . . . . 106

7.2 Experimental Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.1 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.2 Continual Learning Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.3 Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.5 Computing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.1 Comparison with Baseline Approaches . . . . . . . . . . . . . . . . . . . 112
7.3.2 Comparison of Tike vs. PtychoNN Stitched Reconstructions . . . . . . . 114

As an increasing number of real-world applications produce data continuously, this opens
a challenge: how to adapt and update DL models over time, to effectively capture evolving pat-
terns and trends as they occur? Within this paradigm, minimizing the latency between data
acquisition and the generation of subsequent insights is paramount. In this chapter, we demon-
strate the versatility of our proposed rehearsal buffer by applying it to an Edge-to-HPC stream-
ing use-case involving a generative DL model.

— First, we motivate the need for Continual Learning to address the recurring pattern
in modern HPC applications in which a DL model is trained simultaneously with a
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resource-intensive analysis techniques, with the goal of eventually replacing the latter
to decrease the latency between data acquisition and generation of insights. We illustrate
this workflow with a real-life ptychography imaging application (Section 7.1).

— Next, we define the continual learning scenario corresponding to such a streaming set-
ting, and we introduce the performance metrics used in our study (Section 7.2).

— Finally, we apply rehearsal to enable continual learning for ptychography image recon-
struction, addressing questions about the benefits of CL over vanilla incremental training
to train DL models on the fly, the impact of knowledge distillation, the speed of conver-
gence, and the comparison with conventional analysis techniques (Section 7.3).

We chose to work on this real-life use-case in the context of the UNIFY associate team,
a collaboration between Inria and Argonne National Laboratory (ANL). UNIFY aims to ex-
plore innovative approaches to workflow optimization, adaptive data management and pro-
cessing through hybrid techniques leveraging the strengths of the three aforementioned ecosys-
tems. The Advanced Photon Source (APS) at ANL is acquiring data at the edge, which is then
streamed to on-site HPC clusters like ThetaGPU. This experimental setting is a natural fit for
continual learning.

7.1 Motivating Scenario: Continual Learning in Support of Stream-
ing Applications

In this section, we discuss a common recurring pattern in modern HPC applications involv-
ing the need to train and update DL models concurrently with resource-intensive applications.
This scenario is exemplified by ptychographic image reconstruction, where data is acquired in
real-time at the edge and streamed to an HPC machine for processing.

7.1.1 The Need forML out HPC

Conventional HPC analysis techniques are highly resource-intensive, whereas running in-
ferences using a surrogate DL model is typically much more cost-effective [36]. However, ac-
curate DL models are not always available, especially in cases where the input data is acquired
in real-time. One solution is to initiate the experiment with the conventional analysis technique
and use its output data as the ground truth for a simultaneously trained DL model. As soon as
the latter becomes sufficiently accurate, one can switch regimes and run inferences only. In this
sense, the model is used to steer the experiment. This approach allows to save some computa-
tion resources if the cost of training the model and that of running inferences is below the cost
of conventional computations. We refer to this paradigm asML out HPC [37] in Section 2.1.1.

Continual learning is required in this context because it enables the DL model to adapt and
improve over time as new data becomes available, accommodating distribution shifts by miti-
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gating catastrophic forgetting. The ability to quickly update the DLmodel in response to highly
dynamic patterns is critical in such applications. In this context, retraining from scratch each
time new training data becomes available is not feasible, not only because full training is slow
and resource-intensive, but also because the accumulation of all previous training data over
time makes each training on a new task take longer (following a cubic increase). Thus, there is
a need to train and update DL models directly from streaming data, without accumulating it.

7.1.2 Ptychographic Image Reconstruction

An example of a scientific HPC application that produces massive streams of data at the
edge and processes them on HPC clusters is ptychographic image reconstruction. Specifically, a
high-intensity beam produced by a light source is moved along a specimen (the “sample” under
analysis). As the beam passes through the specimen, it scatters and creates overlapping diffrac-
tion patterns that are captured by a sensor in the far-field. Then, these diffraction patterns are
sent to an HPC machine where phase retrieval is performed using an iterative algorithm such as
Tike [158]. For a given diffraction pattern, the result of such an inversion algorithm is a pair of
small (structure, phase) images corresponding to a localized area of the specimen at microscopic
level. It then becomes feasible to stitch these results together to reconstruct full structure and
phase images corresponding to the current position of the specimen to be analyzed. This proce-
dure is repeated until the current perspective is completely covered. At the end of the scan of the
current perspective, the specimen is rotated to obtain new diffraction patterns from a different
position, which again are sent to the HPCmachine to reconstruct new images corresponding to
the newperspective. Asmore images get reconstructed on theHPCmachine, they can be further
subjected to a tomographic reconstruction to obtain a 3D representation of the specimen.

Ptychographic image reconstruction is applicable inmany scientific domains, such as cell bi-
ology, materials science, and electronics, utilizing optical, X-ray, and electron sources. Notably,
X-ray ptychography is widely used with dedicated beamlines at synchrotron light sources. By
offering the capacity for high-resolution imaging of samples with minimal preparation, this ap-
proach has delivered unprecedented insights into various material and biological specimens.
Examples include detailed imaging of biological cells [159], strain imaging of nanowires [160],
and the examination of semiconductor structures through Bragg ptychography [161]. Similarly,
electron ptychography has yielded significant breakthroughs, achieving sub-angstrom resolu-
tion and nanoscale 3D imaging [162].

7.1.3 DL-enabled Real-Time Ptychographic Reconstruction

Evenwhen usingHPCmachines for performing the phase retrieval procedure, conventional
iterative algorithms used for this task are compute-intensive [163]. This limitation is exacer-
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Figure 7.1 – The first row shows 5 different diffraction patterns obtained from the same specimen
perspective. For each of these 5 inputs, the following lines show in order: the structure (“ampli-
tude”) computed by Tike [158] (conventional iterative algorithm), the amplitude predicted by
PtychoNN, the difference between the amplitude computed by Tike and that predicted by Pty-
choNN, the phase computed by Tike, the phase predicted by PtychoNN, the difference between
the phase computed by Tike and that predicted by PtychoNN.

bated by state-of-the-art ptychography instruments which significantly increase the data rate.
To mitigate this bottleneck, a possible alternative is to rely on faster generative DL models for
data analytics [164, 46]. Suchmodels can directly infer the pair of small (structure, phase) images
corresponding to a diffraction pattern with much lower computational complexity. DNNs em-
ployed for ptychography present two other advantages: (1) in contrast to iterative algorithms,
DL models can produce live results before acquiring hundreds of diffraction patterns, and (2)
because inferences are performed independently on each diffraction pattern, no spatial over-
lap is required to yield good results [21]. DL models suitable for this generative learning task
have been explored before, with PtychoNN [24] as a prominent example. Figure 7.1 shows, for
each diffraction acquired by the APS, the pair of images (structure, phase) reconstructedwith the
conventional iterative method (Tike) and using model inferences (PtychoNN). Inferred images
have a dimension of 128x128 pixels.
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Figure 7.2 – Illustration of DL-enabledworkflow for real-time streaming ptychography imaging,
featuring the high-intensity beamproduced by the light source, the specimen (“sample”) under
analysis, the HPC cluster performing the continual training of the DNN, and the edge device
for live inference. Figure borrowed from [21].

However, since each studied specimen is different i.e., specimens have typically never been
observed before, it is not feasible to pre-train a universal DL model that can extrapolate all pos-
sible variations of diffraction patterns. Indeed, phase retrieval is highly sensitive to material
and biological properties. Instead, one can train a DL model on-the-fly on the HPC cluster, by
sending some of the original diffraction patterns in addition to the (structure, phase) ground
truth images reconstructed by the iterative algorithm. Then, once the quality of the inferred re-
sults using PtychoNN is acceptable compared with phase retrieval, the workflow can fallback
to running inferences only, reducing the computational bottleneck. A low-cost, embedded GPU
system at the edge is sufficient for real-time phase retrieval [21] using live inferences. Simulta-
neously, the DL model training procedure may continue for the DNN’s parameters at the edge
to be updated periodically. Continual learning plays a key role here, as the diffraction patterns
and their corresponding (structure, phase) reconstructions are streamed continuously from the
sensor to the HPC cluster, making it unfeasible to constantly retrain the DNN from scratch. At
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high streaming rates, continual learning needs to be coupledwith data-parallel training in order
to be able to keep the DLmodel up-to-date in real-time. This workflow is illustrated in Figure 7.2
and is further detailed in [165]. A DL-enabled, continual workflow for ptychographic imaging
consists of three concurrent stages: (1)measurement (data acquisition), (2) online training, and
(3) live inference using the DL model. Authors in [21] demonstrate that such a workflow can
keep up with the current maximum data acquisition rate of 2 kHz, enabling coherent imaging
in real-time.

Every time that a pair of (structure, phase) images is inferred from a diffraction pattern at the
edge, such DL inferences are stitched together to form the corresponding (structure, phase) full
images gradually at the beamline computer. The stitching procedure consists of interpolating all
inference results onto a regular grid. This is accomplished using data such as the beam position
and the pixel size of the inference image.

7.1.4 Generative Models and Rehearsal-based Continual Learning

Since this dissertation has only focused on classification problems so far, we discuss how
ptychography imaging integrates naturally with the distributed rehearsal buffer. The rehearsal
buffer is aware of classes when storing representative samples, which is pertinent to classifi-
cation models. As briefly discussed in Section 6.1.1, the number of classes can also be limited
to one, in which case our approach can be applied to generative models. In the context of pty-
chography imaging, this class corresponds to a “diffraction pattern”. However, in practice, users
do not have to choose between a single class for generative workloads and K classes for clas-
sification workloads: the buffer’s generality allows for the definition of an arbitrary number of
classes. In the case of ptychography, one could imagine defining two classes as well, depend-
ing on whether the diffraction contains an area of the specimen with or without a void. This
distinction could make it possible to adapt the way minibatches are subsequently augmented,
by favoring the selection of diffractions corresponding to full zones (without voids), or accord-
ing to any other characteristic enabling to distinguish between diffractions. Buffer management
and the distribution of stored representatives can be adjusted to the problem at hand in order
to improve the achieved accuracy. For simplicity reasons, we limit the number of classes here
to a single class. Experiments about the buffer data layout would be useful to study how this
would affect the accuracy of different tasks.

Another key difference from classification problems is the ground truth data type. In the
case of a classification problem, the ground truth is a simple label y corresponding to the class
number. However, with generative workloads, the shape of the ground truth data is typically
more complex as it corresponds to the expected reconstruction of the DNNmodel (e.g., an im-
age, a text, a video, etc) for a given input sample. For ptychographic imaging, the output of the
DNN is a pair of small (structure, phase) images reconstructed from a given diffraction pattern.
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Figure 7.3 – With generative workloads, representatives of a single class are stored in the re-
hearsal buffer Bn. This includes training samples as well as associated structure and phase
reconstructions. Our generic design allows to hold additional information associated to these
representatives: this example holds activations. This data is served using global sampling to be
made available to the training procedure alongside representatives.

Since these images are ground truth, they are an intrinsic part of a representative training sam-
ple. For this reason, they are stored in the buffer Bn alongside diffraction patterns. The flexible
design of the distributed rehearsal buffer allows to handle all these scenarios by storing data
intrinsic of representative training samples contiguously in memory. A possible buffer config-
uration is depicted in Figure 7.3, illustrating the flexibility of our approach to accommodate a
large range of deep learning workloads. In this case, all local buffers Bn,1 contain representa-
tives of shape (diffraction, structure, phase), all belonging to the same class diffraction pattern.
Corresponding activation states are stored in a separate bufferBn,2, as discussed in Section 6.1.2.

7.2 Experimental Setup and Methodology

In this section, we define the continual learning scenario and we introduce the performance
metrics used in our study. We make links between the concepts developed in this dissertation
and the real-life application of ptychography imaging in real-time.
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7.2.1 Training Dataset

We use a sequence of 157 perspectives in the order in which they are captured by Argonne’s
Advanced Photon Source (APS). Each perspective corresponds to a specific rotation of the spec-
imen to be analyzed. The X-ray beam follows a commonly used pattern to scan a perspective, as
illustrated in Figure 7.4, which depicts a single perspective. This procedure results in a large
number of intensity diffraction patterns to be acquired in the far-field. Specifically, about 950
diffraction patterns are produced from every perspective. A pair of structure and phase re-
constructions is computed for every individual diffraction using Tike [158], a commonly used
phase retrieval algorithm based on traditional computations. When stitched together, all these
local reconstructions form a full image of the perspective at hand, that we refer to as the final
stitched reconstruction.

The objective of the learning model is to supplant the resource-demanding Tike algorithm,
with the same purpose of reconstructing the corresponding phase and structure from a given
diffraction pattern. In that sense, the (structure, phase) pair serves as the ground truth for the
learning model, and each training sample is a (diffraction, structure, phase) tuple. Unlike the pre-
vious classification problem introduced in Chapter 5, we treat all training samples as belonging
to a single class (as detailed in Section 7.1.4). The dataset preparation procedure is as follows: for
each of the first 156 perspectives, first we filter out diffraction patterns associatedwith a “blank”
phase reconstruction (i.e., containing a void area), that do not capture ameaningful pattern and
are too sparse to be informative for training the model. Such blank Fields of View (FOVs) could
even bias the training in an undesirable direction. Specifically, after about twenty training cy-
cles with all other hyperparameters fixed, we exclude diffraction patterns whose square of the
phase image is below a threshold of 0.02. This reduces the number of meaningful training sam-
ples from 950 to about 600 on the average. Then, out of the meaningful training samples, we
choose 10% randomly to be used as validation data, while the rest is used for the actual training
procedure.

Out of the sequence of 157 perspectives, the first 156 are used to train the model, while the
last one is used to test the quality of the final stitched reconstruction against the baseline (Tike).
Besides, to simulate a realistic CL setup, we do not shuffle the positions of the training samples
within each perspective. Instead, we assume they are fed to the training in a streaming fashion,
in the same order they were acquired from the sensor, as per Figure 7.4. This allows us to study
how the natural order impacts the CL process. Since all training samples belong to the same
class, the model is unaware of the specific perspective they originate from.

In Figure 7.4, the axes are not labeled with specific units. This is because the experimental
data we obtained was lacking metadata such as the nature of the specimen under analysis, or
the precise scaling of the axes. While this absence of metadata might typically be considered
a limitation, it is not critical for the purposes of our study. The figure is intended to illustrate

108



7.2. Experimental Setup and Methodology

Figure 7.4 – Illustration of the spatial path (left-right, top-bottom) taken by the X-ray beam to
scan a single perspective of a specimen. This procedure generates 950 diffraction patterns in the
far field, which are then used to compute structure and phase reconstructions using Tike.

the spatial path taken by the X-ray beam during the imaging procedure, which is sufficient for
understanding the principles and outcomes discussed. The axes could represent nanometers, a
common unit in ptychography imaging techniques, but the primary focus here is on the qualita-
tive behavior of the data acquisition. Specifically, diffraction patterns are measured in a specific
order, and fed as such to the analytics workflow (or DL model).

7.2.2 Continual Learning Scenario

Since the goal of the training is to produce an accurate generativeDLmodel, we have a single
flat output space. Each new perspective of the specimen represents a new learning task that is
used to update theDLmodel through continual learning,which fits the the domain-incremental
(“Domain-IL”) scenario, as discussed in Section 2.2.3. This setting characterizes task changes by
introducing a shift in the input distribution, corresponding to different perspectives of the spec-
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Figure 7.5 – PtychoNN architecture

imen to analyze in our case. This is complementary to the experiments presented in Chapter 5,
where we focused on the class-incremental learning scenario.

7.2.3 Learning Model

We use PtychoNN [24] to reconstruct ground-truth images from the diffraction patterns
data. Specifically, this autoencoder DNN takes as input a diffraction pattern and outputs a pair
of structure and phase images (reconstructions). The DL model architecture (depicted in Fig-
ure 7.5) consists of three parts: an encoder arm that contains convolutional and max pooling
layers designed to learn a representation of the input data (diffraction patterns), and two de-
coder arms that contain convolutional and upsampling layers designed to reconstruct real-space
images (structure and phase). The phase model uses tanh() as the activation function, whose
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output is restored in the [π;−π] range.
Since the position of the X-ray beam is known for each diffraction pattern, one can stitch

the local reconstructions together to form the final image corresponding to one perspective. We
use the Adam optimizer with an initial learning rate η = 0.00088. We then follow an exp_range
learning rate schedule as suggested by [166], with a gamma coefficient set to 0.996 and a step
size set to 184 training iterations. We enable Automated Mixed Precision (AMP) to speed up
the training.

In contrast to the evaluations presented in Section 5.2.2 where we used a minibatch size of
b = 56 and a representative count of r = 7, we now integrate a larger number of representatives
into the training procedure, specifically, a minibatch size of b = 16 and a representative count
of r = 24. The proportion of old samples is increased in our experimental context as the input
data is not revisited; instead, input diffraction patterns are streamed to the model continuously.

7.2.4 Performance Metrics

The DL model is trained using an absolute square loss calculated between its predictions
(i.e., structure and phase images) and the ground-truth images computed by Tike. Furthemore,
to evaluate the quality of the final reconstructed image, we use the Peak-Signal-to-Noise Ra-
tio(PSNR) and the Structural Similarity (SSIM) [167] metrics, which are computed against the
baseline reconstruction using Tike. PSNR is most easily defined via the mean squared error
(MSE). Given a W × H ground-truth image computed by Tike I and its corresponding Pty-
choNN reconstruction R, MSE is defined as:

MSE(I, R) = 1
WH

W −1∑
i=0

H−1∑
j=0

[I(i, j)−R(i, j)]2 (7.1)

The PSNR (in dB) is defined as:

PSNR(I, R) = 20 · log10 (MAXI)− 10 · log10 (MSE(I, R)) (7.2)

where MAXI is the maximum pixel value of the ground-truth image. The SSIM measure
between I and R is:

SSIM(I, R) = (2µIµR + C1)(2σIR + C2)
(µ2

I + µ2
R + C1)(σ2

I + σ2
R + C2)

(7.3)

where µI and µR are the average (mean) intensities of I and R, σ2
I and σ2

R are the variances
of I and R, σIR is their covariance, and C1 and C2 are small constants to avoid instability when
the denominator is very close to zero.
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7.2.5 Computing Environment

We run our experiments on a single node of Argonne National Laboratory’s Polaris HPC
testbed, with the same software environment as detailed in Chapter 5. It consists of 560 nodes,
each equipped with 512 GB of DDR4 memory (aggregated from four NUMA domains), a 32-
core AMD Zen 3 (Milan) and four Nvidia A100 GPUs aggregating to a total of 160 GB HBM
memory. Four A100 GPUs are connected with each other using four NVLinks andwith the host
memory through a PCIe Gen 4 interface.

7.3 Experiments and Results

Our experiments seek to illustrate the benefits of a distributed rehearsal buffer for generative
DL models. They focus on the generality of the rehearsal buffers, as underlined in Chapter 6,
rather than the scalability onmultiple GPUs. To this end, we apply rehearsal to enable continual
learning for ptychographic image reconstruction, as described in Section 7.1.3. In this case, we
aim to answer the following questions:

— What benefits does continual learning based on rehearsal bring over incremental training
that ignores catastrophic forgetting?

— Does knowledge distillation help improving the achieved accuracy?
— Does rehearsal speed up convergence?
— What is the impact on the end-result if we replace a traditional reconstruction algorithm

(Tike) with a generative DL model?

7.3.1 Comparison with Baseline Approaches

Our first series of experiments compares the evolution of the validation loss (absolute square
loss between the DL model predictions and ground truth for the 10% of the training samples
reserved as validation data) for an increasing number of tasks (perspectives). This enables us
to gain two important insights: (1) how fast CL converges; (2) at what validation loss level does
the training stabilize after convergence. We compare the following three approaches:

— Incremental training: updates the model directly with the new training samples corre-
sponding to a new perspective. No training samples of any previous task (perspective)
are revisited, which may lead to catastrophic forgetting.

— Rehearsal using Simple Replay (ER): augments each minibatch during the training of
a new task (perspective) with randomly selected training samples from the rehearsal
buffer, which stores representatives from the previous tasks (perspectives).

— Rehearsal using Dark Experience Replay (DER++): follows the same approach as ER,
but, additionally, it uses the knowledge distillation technique introduced in Section 6.1.2,
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Figure 7.6 – Evolution of the validation loss for an increasing number of tasks.

which leverages the rehearsal buffer to store input activation tuples for the representa-
tives. PtychoNN uses tanh() as the activation function for the phase decoder. We ran a
hyper-parameter search setting the parameters α and β to 0.8 (knowledge distillation)
and 1 (rehearsal), respectively.

The results are depicted in Figure 7.6, where the validation loss on all previous tasks is plot-
ted after training on a new task (perspective). As can be observed, unlike the results obtained
for the ImageNet benchmark, the negative effect of catastrophic forgetting is less pronounced
in this case: with increasing number of tasks, the incremental training converges relatively fast
towards a low validation loss. However, ER and DER++ stabilize after convergence at signifi-
cantly lower validation loss: 25% and, respectively, 30% lower. Interesting to observe is the con-
vergence speed of the rehearsal approaches. While ER experiences a drop in validation loss that
almost overlaps with the incremental training, DER++ experiences a sharper drop significantly
sooner. For example, after 30 tasks, DER++ has the same validation loss as ER after 40 tasks.
This observation is important because it hints at the advantages of using more advanced forms
of rehearsal to train an accurate DL model sooner, which means the switch from traditional
computations to a DL model can be triggered earlier, thus improving the overall benefits.
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Figure 7.7 – Stitched reconstructions obtained from four different approaches. No task gets re-
visited during training (one epoch per task). From left to right: incremental training, vanilla Ex-
perience Replay, Experience Replay + knowledge distillation (DER++), and the ground-truth
reconstruction computed byTike.One can notice a gradual improvement in reconstruction qual-
ity.

7.3.2 Comparison of Tike vs. PtychoNN Stitched Reconstructions

Our next series of experiments focuses on evaluating the end-impact of our proposal in the
final results. Specifically, in the case of ptychographic image reconstruction, this involves a full
reconstruction of the final image corresponding to a perspective using theDLmodel predictions
(structure and phase), which is then compared with the equivalent final image obtained using
Tike. To study the adaptability of the DLmodel to completely new perspectives (as encountered
in a real-life scenariowhenwedelegate retrieval to theDLmodel by running live inferences), we
study the 157-th perspective, which was excluded from the training to form a separate testing
set.

The results are visually depicted in Figure 7.7. We generate four final images corresponding
to four approaches: incremental training, ER, DER++, and Tike. For each approach, we focus
on the phases predicted (or computed in the case of Tike) from the diffraction patterns, which
are then stitched together following the path taken by the beam, depicted in Figure 7.4. As
can be observed, all three DL models can accurately reconstruct the final image, albeit with
a slightly different level of sharpness compared to Tike. In particular, DER++ produces the
sharpest image, followed by ER and finally incremental training, for which the studied object is
slightly blurry. This may be attributed to an intrinsic limitation of autoencoder models [168].

To quantify the differences between the final images produced by all four approaches, we
use the PSNR and SSIM metrics introduced in Section 7.2.4. The results are listed in Table 7.1.
As expected, DER++ has the highest quality (higer PSNR and SSIM), followed by ER and fi-
nally by incremental training. Interesting to observe is that these metrics are close for all three
approaches in absolute terms. However, as mentioned previously, they have an impact in the
image quality that is visible in the sharpness level. Furthermore, the reconstruction was done
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Learning setting PSNR SSIM

Incremental Training 66.31 0.99784

Rehearsal using ER 67.86 0.99853

Rehearsal using DER++ 68.24 0.999634

Table 7.1 – PSRN and SSIM of incremental, ER and DER++ relative to Tikewhich is used as the
baseline.

for the 157-th perspective after trainingwith 156 perspectives. At this point, all three approaches
have converged. If done at a lower task number (earlier perspective), we expect that the met-
rics may emphasize a larger difference between DER++ and the other two DL models, since
DER++ converges faster (as per Section 7.3.1).

Our experiment with ptychographic image reconstruction shows that advanced experience
replay strategies for continual learning such as DER++ can outperform simple experience re-
play (ER) in terms of convergence speed i.e., the faster convergence of themodelmeans it can be
reached more quickly, enabling faster analysis of specimens. This improvement helps replacing
conventional analysis techniques, which are typically resource-intensive, with faster equivalent
DL models. Finally, compared with incremental training, rehearsal-based continual learning
enhances accuracy of the reconstruction procedure after convergence.

During the experiment, if the DL model’s performance is deemed satisfactory according
to the criteria required by the steaming application, the ground truth data generation using
conventional analysis techniques can be stopped, or sloweddown. This has the effect of lowering
the overall resource utilization by moving the workload at the edge entirely. Hence, relying on
faster surrogate DLmodels open the door to real-time imaging, and thus automated steering of
experiments. While we did not demonstrate this aspect experimentally, we plan to investigate
it in future work and to quantify the benefits.
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In this chapter, we have demonstrated the versatility and effectiveness of our pro-
posed rehearsal buffer by applying it to a different learning task involving a genera-
tive DLmodel.We discussed the necessary adaptations and highlighted the flexibil-
ity of our buffer design in accommodating awide range of deep learningworkloads,
including generative models. By applying our approach to the real-life use-case of
ptychographic image reconstruction, we showcased the potential of our method in
enabling continual learning in support of streaming applications. Our results indi-
cate that our proposed rehearsal buffer can speed up the convergence of genera-
tive DL models in handling streaming data, making it a valuable tool for modern
HPC applications that need to simultaneously train and run inferences on DLmod-
els that need to adapt to highly dynamic patterns. Notably, rehearsal coupled with
knowledge distillation (DER++) achieves the best reconstruction quality, with a
1.93 point improvement in the PSNR (Peak Signal-To-Noise Ratio) metric over in-
cremental training.As a result, the reconstruction quality obtainedwith incremental
training can be achieved more quickly when using the distributed rehearsal buffer.

Conclusion
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Existing research typically addresses distributed deep learning and continual learning sep-
arately. In this dissertation, we were interested in how CL methods can take advantage of data
parallelization across nodes, which is one of the main techniques to achieve training scalability
on HPC systems. The aggregated memory could benefit the accuracy achieved by such algo-
rithms by instantiating distributed rehearsal buffers. Themain research goals of this dissertation
were the (1) design and implementation of a rehearsal buffer leveraging distributed systems ef-
fectively and the (2) study of trade-offs introduced by large-scale CL in terms of training time,
accuracy and memory usage. We summarize some of the research questions that we addressed
in this dissertation:

1. A first step towards enabled CL at scale was to understand the role of distributed re-
hearsal buffer by answering questions like: What are the extensions needed to leverage re-
hearsal buffers for data-parallel training, and how do they impact the training performance? How
can asynchronous techniques be used to hide the overhead of managing rehearsal buffers?

2. A natural next step was to generalize the rehearsal buffers to enable more advanced
continual learning settings. With a growing diversity of rehearsal techniques, it becomes
important to decouple the rehearsal buffer from the learning task, such that it becomes
a generic abstraction that can store additional state information. For instance, we answer
questions likeHow canwe design a rehearsal buffer that do not impose any particular constraints
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on the data layout of representatives retained in the rehearsal buffer? How can we serve additional
state information conveniently to make it available in the training loop?

3. Finally, we assessed the impact of our proposal on a real-life use-case involving stream-
ing data, with the aim of illustrating how continual learning can benefit real-time appli-
cations. One relevant challenge is How can the integration of DL models in HPC streaming
applications be practically applied to improve the efficiency and accuracy of real-life experiments?

The specific contributions of this dissertation toward answering the above questions are de-
tailed in the next section. We then discuss the prospects opened for future work.

8.1 Achievements

We structure the list of achievements of this dissertation to mirror the research objectives
listed in Section 1.2.

8.1.1 Achieving Much-Improved Accuracy in Class-Incremental CL Scenarios

Corresponding research objective: ADistributedRehearsal Buffer to EnableContinual Learn-
ing at Scale.

We propose a novel distributed rehearsal buffer abstraction that aims to leverage distributed
systems effectively. Specifically, we (1) define the concept of rehearsal buffers to address contin-
ual learning, and introduce extensions to leverage them for data-parallel training in Chapter 3.
Data parallelism allows to achieve short runtime and scalability while retaining high accuracy.
Next, we (2) introduce key design principles such as asynchronous techniques to hide the
overhead of managing rehearsal buffers in Chapters 3, 4. Such optimizations are necessary to
prepare augmented minibatches anticipating the next training iteration. Besides, global sam-
pling enables a full spectrum of representative combinations for minibatch augmentations.
The novelty of our work lies in the data management techniques to make rehearsal scalable on
many GPUs. To our best knowledge, such HPC-oriented aspects aimed at improving training
performance were not explored before.

We demonstrate in Chapter 5 the benefits of the distributed rehearsal buffer by studying the
trade-offs introduced by large-scale CL using a synthetic benchmark in terms of training time,
accuracy andmemory usage.We run extensive experiments on up to 128GPUs of the ThetaGPU
supercomputer to compare our approach with baselines representative of from-scratch training
(the upper bound in terms of accuracy) and incremental training (the lower bound in terms of
training time). In our class-incremental scenario using the ImageNet-1K dataset, results show
that rehearsal-based continual learning achieves a top-5 classification accuracy of 80.55%, close
to the upper bound (91%). The achieved accuracy ismuch improved comparedwith incremen-
tal training (23.3%). Furthermore, the overhead of managing the rehearsal buffer is absorbed
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asynchronously in our experiments, enabling rehearsal-based CL to achieve the same training
performance than incremental training. Finally, we show that storing more representatives in
the buffer improves accuracy, but that the effect is no longer apparent after a certain threshold
(corresponding to storing 30% of the ImageNet dataset). We use three different convolutional
networks to demonstrate the model-agnostic nature of our proposal.

8.1.2 Enabling the Support of More Advanced CL Algorithms

Corresponding research objective: AGenericDistributedBufferGeneric in Support ofMore
Advanced Rehearsal Techniques.

A natural evolution of our proposal is to make the buffer generic in order to support a larger
range of continual learning techniques. This amounts to decoupling the rehearsal buffer from
the learning taskwhile transparently augmenting theminibatcheswith the data needed to learn
the task at hand. To achieve this, we identified threemain levers in Chapter 6. Specifically, we (1)
relax constraints on the data layout of representatives retained in the rehearsal buffer, allowing
for the unified management of representatives (useful for generative tasks), or for the per-
class management of representatives. Next, we (2) propose to store additional heterogeneous
state information as needed bymore advanced rehearsal-based CL algorithms in separate local
buffers, reusing all optimizations developed in Chapter 4 for efficient access under concurrency.
Finally, we (3) propose the concept of annotated tuples of tensors to serve representative train-
ing samples and their associated states, enabling to enrich tuples (x, y, . . .) exposed to the AI
runtime with heterogeneous data.

8.1.3 Enabling theSteering of Experiments inReal-Time, byLearning fromaStream
of Data

Corresponding research objective: Integration with a Real-life HPC Streaming Application
Benefiting from Generative Continual Learning.

In order to demonstrate once again that the distributed rehearsal buffer can improve the
performance of very different learning tasks (as discussed in Chapter 6), we study its adapta-
tion to a real-life use-case leveraging a generative DL model. Our focus is on a scientific HPC
application that produces massive streams of data at the edge and processes them onHPCma-
chines, with the aim of generating reconstructions using ptychography imaging. We explain in
Chapter 7 how the distributed rehearsal buffer stores more complex-shaped representatives as
required by reconstruction tasks.

We report on experiments showcasing the potential of our proposal in enabling contin-
ual learning in support of streaming applications. We use the PtychoNN model in a domain-
incremental CL setting for two different types of rehearsal (vanilla Experience Replay and Dark
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Experience Replay++ leveraging knowledge distillation), which both compare favorably to in-
cremental training in terms of final achieved accuracy. This leads to better reconstruction quality
for the specimen under analysis. Furthermore, our results show that DER++ enables the fastest
convergence speed of the model required for the real-time visualization of specimens at the
edge. Finally, if the DL model’s performance is deemed satisfactory during the experiment, the
ground truth data generated by computationally intensive analysis techniques can be stopped
to rely on DL inferences only. This regime helps lowering the overall resource utilization by
moving the workload at the edge entirely.

8.2 Prospects

This dissertation opens several prospects. We list the most promising ones in this section.
We divide these prospects into two sections.

8.2.1 More Advanced Selection and Eviction Policies

The novelty of our work lies in the techniques to make rehearsal scalable in the context
of data-parallel training. For this reason, we focused on the Naive Incremental Learning (NIL)
algorithm [20] as a simple selection approach, which is sufficient to illustrate the scalability of
our data management techniques. This algorithm simply assigns a probability of c/b to each
sample of the incoming minibatch m to be pushed into the local rehearsal buffer Ri

n (i denotes
the class id). As such, c acts like an update rate: i.e., the higher the value of c, the more often
representatives are renewed in rehearsal buffer Bn. Please note that we have not studied the
effect of parameter c on accuracy, as the competition to populate the buffer is done per class. In
a class-incremental setting, where classes do not reappear in different tasks, representatives of
class i are replaced only when the task in which training samples of class i is learned, and the
content of a buffer Ri

n remains unchanged afterwards.
A research question that has received a lot of attention recently is how to best sample rep-

resentatives to store in the distributed rehearsal buffer. As demonstrated in this dissertation,
rehearsal is very effective and led to many variants depending on: (1) how the rehearsal buffer
content is managed, (2) which training samples are selected to populate the buffer, and (3) what
kind of regularization is applied on representatives.

Regarding (1), how is the rehearsal buffer populated, some authors propose a reservoir sam-
pling strategy [169] to manages representatives [89, 72, 170]. Reservoir sampling guarantees
that the content of the buffer constitute a uniform sample from the input data stream of un-
known length. Each item in the stream is included in the rehearsal buffer with a probability
of |Bn|/N , where N is the total number of samples observed thus far. This approach would
be particularly advantageous in scenarios where representatives are not organized by class id
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within the rehearsal buffer, such as when the number of classes T is unknown prior to the train-
ing procedure. Other authors propose a ring buffer strategy [19, 72], where buffers Ri

n follow a
FIFO pattern. As the competition is done per class (like implemented by our proposal), repre-
sentatives from older tasks do not change throughout training in a class-incremental scenario.
Thesemethods are similar to our approach, and trivial to implement in the distributed rehearsal
buffer. The required changes are to be made in Neomem, independently of the calling Python
code.

Regarding (2), which representatives are selected to be stored in the buffer, some authors
propose mean of exemplars or mean of features [18, 72] inspired by incremental clustering [171], a
selection strategy that keeps track of the average feature vector for each class, and stores candi-
dateswhose feature representation is closest to the average feature vector. A complementary ap-
proach to evict representatives is herding [172] to preserve the data distribution associated with
representatives of a given class. Another eviction policy proposed in [76] is to target representa-
tives based on their gradient so as to keep diverse representatives in the buffer, formulating this
as a constraint reduction problem. This approach proves more efficient than reservoir sampling
on imbalanced data. The Loss-Aware Reservoir Strategy (LARS) proposed in [75] adopts an ap-
proach in which representatives are stored alongside their original loss score to evict low values
first. These approaches can be integrated into the distributed rehearsal buffer, but in most cases
more substantial additions will have to be made as the computational complexity increases.

Finally, regarding (3), what kind of regularization is applied on representatives [19, 89].
Similarly to LARS, authors in [173] leverage the loss score of representatives to devise a prior-
ity function called Error-Prioritized Replay (EPR). This approach modifies the loss calculation
accordingly with importance weights. Built upon the seminal work of [174] providing new in-
sights about knowledge distillation, authors in [92] revisit the DER algorithm. Specifically, they
propose to rewrite neural activations associated with past representatives as they are sampled
to leverage new insights regarding previous tasks. Furthermore, inspired by contrastive learn-
ing [175], X-DER implements a future preparation strategy which prepares classification heads
(neurons) associated to incoming tasks yet to be observed. This mitigates large parameter up-
dates, lowering the risk of forgetting as a result. The performance of such regularization meth-
ods will benefit from asynchronous augmentations required for operations needed for knowl-
edge distillation, storing additional states in the distributed rehearsal buffer, and serving them
to the AI runtime using annotated tuples. Rewriting states could be achieved with a slight vari-
ant of accumulate() that could update existing data.

8.2.2 Application to Numerical Simulations

Numerical simulations are a critical tool for scientific discovery and engineering applica-
tions, but their computational intensity often hinders their efficiency [176]. Recent advances in
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deep learning have shown promise in accelerating these simulations through the development
of deep surrogate models. For instance, Physics-Informed Neural Networks [177] (PINNs) are
typically trained in a supervised fashion using simulation data [178, 179]. Building on this idea,
authors in [130] present the Melissa framework designed to train DL models on synthetic data
generated on-the-fly by conventional simulation codes. By generating rich datasets simultane-
ously with the DL training procedure, this approach avoids the need for cumbersome data stor-
age and costly I/O operations. Instead, the generated data is directly streamed to a rehearsal
buffer where reservoir sampling is used to mitigate the inherent bias of sequential samples, re-
sulting in increased generalization capabilities and lower validation loss. Another benefit of this
approach is to maximize GPU throughput by accumulating multiple training samples waiting
to be ingested. Experiments have demonstrated the effectiveness of this approach, with train-
ing times reduced from days to hours. The framework has also been shown to enable training
on large datasets up to 8TB in size, in a fraction of the time required by conventional simula-
tions. This is accomplished thanks to a a multi-level parallelism (parallel solver execution, data
parallel training, ensemble run execution).

Many concepts introduced by our proposal could be reused to achieve the same goal of train-
ing deep surrogate models from simulation data. First, the generic design of the distributed re-
hearsal buffer allows to store representatives of any shape, accommodating any training sample
generated by clients running the simulation code. Then, the distribution of samples from clients
to GPUs in a round-robin fashion can be delegated to the buffers themselves, which use global
sampling to enforce the balance of data for data parallel training. Next, the 1:1 synchronization
between training iterations and calls to accumulate() (as discussed in Section 4.1.1) should be
relaxed to enable clients to populate the rehearsal buffer at a higher throughput than the model
ingestion rate, enabling GPUs to remain active at all times. All in all, the biggest change for
Neomem is the implementation of a reservoir sampling strategy as discussed in Section 8.2.1.

8.2.3 Application to Large Language Models

Recent advances in Large Language Models [180] (LLMs) have centered around larger
datasets, larger DL models, and larger context lengths. Learning in context, where the model
improves based on the surrounding user input (also referred to as prompt), benefits from longer
context lengths to enhance accuracy[181].However, there are certain limitations to relying solely
on in-context learning during inference, as the model’s ability to adapt and acquire new knowl-
edge is constrained. For this reason, continual learning may be required to further enhance its
performance. In this section,we discuss howour proposal could benefit both in-context learning
and continual fine-tuning of LLMs.
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In-context learning Large Language Models are trained on vast amounts of text data to gen-
erate human-like responses by predicting the likelihood of a word given its preceding words in
a sentence. At inference time, if the training data of an LLM is unrelated to the user prompt, the
model’s response will likely be unsatisfactory, as it may not possess the necessary knowledge or
context to provide a relevant and accurate answer. In-context learning involves providing amodel
with relevant context before prompting it with a task, allowing the model to extract informa-
tion from the context and apply it to the task at hand. As such, the user prompt is augmented
by incorporating additional contextual information. This approach, which does not require ad-
ditional training or backpropagation, is called Retrieval Augmented Generation [182] (RAG),
where relevant context is retrieved and used to generate valuable output. Recent advancements
in LLMs allowed to increase themaximum context length to 10million tokens [183], underscor-
ing the rationale to resolve these issueswith suchmethods relying onRAGand extended context
lengths. Models generate hallucinations [184, 185] due to their probabilistic nature. However,
the likelihood of a model producing hallucinations substantially decreases when the DL model
is provided with the correct via context retrieval [186]. Using this idea as a starting point, some
authors advocate for retrieval-augmented LLMs [187], where a new dimension of scaling LLMs
is introduced by focusing on the size of the datastore used for RAG at inference time [188]. This
study demonstrates that a larger datastore improves language modeling and downstream task
performance, underscoring the importance of considering datastore size as an integral part of
LLM efficiency and performance trade-offs.

In this context, our proposal of a distributed rehearsal buffer could be leveraged to inject
samples into the context window when running inferences. This would require the ability to
discriminate between representatives (stored as embeddings), in order to sample those most
relevant to the current inference. This procedure would be carried out by a retriever [189] that
would integrate with the rehearsal buffer. Such a component should adjust its search behavior
depending on the task at hand, and would represent a significant and complementary research
effort.

Continual Fine-tuning Despite the simplicity and effectiveness of in-context learning, this
approach lacks close interactions with LLM components, posing at least three significant chal-
lenges. A first limitation pertains to inference costs, which increase exponentially with larger
context lengths [190]. Besides, in some scenarios, the relevant context simply may not exist,
leading to issues like unsupported generations [191]. For instance, if a user wants to be assisted
when working with specialized libraries that lack documentation, RAG or retrieval methods
cannot empower models to address the unforeseen training data. Finally, the last critical short-
coming pertains specifically to in-context learning, as a model’s in-context learning capacity is
constrained by its pre-training data. If a given LLM has been trained on code and documenta-
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tion, one would anticipate its proficiency in concepts related to programming. However, its per-
formance on unrelated tasks would be suboptimal. In these scenarios where in-context learning
falls short, the training procedure should be resumed using data samples relevant to the current
and future tasks. However, incremental training applied to LLMs, also referred to as fine-tuning,
suffers from catastrophic forgetting [192] too. Rehearsal on representative training samples has
been discussed in the literature lately [193, 194, 195, 196] tomitigate this issue. Therefore, all the
arguments developed in this dissertation apply to this new field of research, and our proposal
for a distributed rehearsal buffer will also benefit these large models.

The preparation of augmented minibatches for training LLMs affects the data pipeline that
supplies samples to the model, rather than the training procedure itself, as extensively dis-
cussed in this dissertation. From a technical standpoint, the integration of rehearsal buffers
with DeepSpeed [119], the primary runtime to perform model parallelism, is crucial. This in-
tegration enables the exploitation of 3D parallelism, which synergistically combines data, ten-
sor, and pipeline parallelism to optimize computational efficiency. Furthermore, to maximize
memory efficiency, the utilization of ZeRO optimizations [122, 123] allows for the offloading of
parameters, gradients, and optimizer states to CPUs during periods of inactivity in the compu-
tation, thereby minimizing memory usage and enhancing overall system performance. To our
best knowledge, such a system combining 3D parallelism and specialized data management
techniques to make rehearsal scalable in this context has not been proposed yet.
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Titre : Tampons de Répétition Distribués pour passer l’Apprentissage Continu à l’Échelle

Mot clés : apprentissage continu, oubli catastrophique, parallélisme de données, tampon de
répétition distribué, gestion de données asynchrone, scalabilité

Résumé : L’apprentissage profond est un ou-
til d’extraction d’informations à partir de vo-
lumes de données gigantesques. Cependant,
lorsqu’ils sont entraînés sur des tâches sé-
quentielles (sans accès au jeu de données
complet au début de l’entraînement), les ré-
seaux de neurones souffrent d’oubli catas-
trophique, un phénomène qui donne davan-
tage d’importance aux échantillons récents au
détriment des connaissances acquises plus
tôt. Cette limitation est problématique pour
les applications exploitant des flux de don-
nées générés au fil du temps. Il est irréali-
sable de ré-entraîner des modèles à partir de
zéro à chaque fois que de nouveaux échan-
tillons sont ingérés, car cela s’accompagnerait
de temps d’entraînement trop élevés.

Dans cette thèse, nous présentons des
techniques basées sur la répétition pour pas-
ser l’apprentissage continu à l’échelle. Les ap-
proches basées sur la répétition utilisent des
échantillons représentatifs rencontrés précé-
demment pendant l’entraînement, afin d’aug-
menter les futurs minibatches avec. Notre
contribution principale porte sur la façon d’al-
lier répétition d’échantillons représentatifs et
parallélisme de données, qui est l’une des
principales techniques pour passer des work-
loads à l’échelle sur les systèmes HPC. Nous
proposons ainsi un tampon de répétition distri-
bué exploitant de nombreuses techniques de
parallélisation, permettant d’améliorer les per-
formances prédictives du modèle sans allon-
ger le temps entraînement.

Title: Distributed Rehearsal Buffers for Continual Learning at Scale

Keywords: continual learning, catastrophic forgetting, data parallelism, experience replay, dis-
tributed rehearsal buffer, asynchronous data management, scalability

Abstract: Deep Learning (DL) emerged as
a way to extract valuable information from
ever-growing volumes of data. However, when
trained on sequential tasks i.e., without full
access to the dataset at the beginning of
the training, typical Deep Neural Networks
(DNNs) suffer from catastrophic forgetting, a
phenomenon causing them to reinforce new
patterns at the expense of previously acquired
knowledge. This limitation prevents updating
models incrementally, which is problematic in
many real-life scenarios where the aforemen-
tioned datasets are replaced by data streams
generated over time. It is unfeasible to train
models from scratch every time new samples

are being ingested either, as this would lead to
prohibitive time and/or resource constraints.

In this dissertation, we present tech-
niques based on rehearsal to achieve Con-
tinual Learning at scale. Rehearsal-based ap-
proaches utilize representative samples previ-
ously encountered during training to augment
future minibatches with. The key novelty we
address is how to adopt rehearsal in the con-
text of data-parallel training, which is one of
the main techniques to achieve training scala-
bility on HPC systems. We design a distributed
rehearsal buffer that leverages parallelization
techniques, enabling us to improve model per-
formance without increasing training time.
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