
Efficient Data-Parallel Continual Learning with
Asynchronous Distributed Rehearsal Buffers

Thomas Bouvier1, Bogdan Nicolae2, Hugo Chaugier1, Alexandru Costan1, Ian Foster2, Gabriel Antoniu1
1University of Rennes, Inria, CNRS, IRISA, 2Argonne National Laboratory

{thomas.bouvier,hugo.chaugier,alexandru.costan,gabriel.antoniu}@inria.fr,{bnicolae,foster}@anl.gov

Abstract—Deep learning has emerged as a powerful method
for extracting valuable information from large volumes of data.
However, when new training data arrives continuously (i.e.,
is not fully available from the beginning), incremental train-
ing suffers from catastrophic forgetting (i.e., new patterns are
reinforced at the expense of previously acquired knowledge).
Training from scratch each time new training data becomes
available would result in extremely long training times and
massive data accumulation. Rehearsal-based continual learning
has shown promise for addressing the catastrophic forgetting
challenge, but research to date has not addressed performance
and scalability. To fill this gap, we propose an approach based on
a distributed rehearsal buffer that efficiently complements data-
parallel training on multiple GPUs, allowing us to achieve short
runtime and scalability while retaining high accuracy. It leverages
a set of buffers (local to each GPU) and uses several asynchronous
techniques for updating these local buffers in an embarrassingly
parallel fashion, all while handling the communication overheads
necessary to augment input minibatches using unbiased, global
sampling. In this paper we explore the benefits of this approach
for classification models. We run extensive experiments on up
to 128 GPUs of the ThetaGPU supercomputer to compare our
approach with baselines representative of training-from-scratch
(the upper bound in terms of accuracy) and incremental training
(the lower bound). Results show that rehearsal-based continual
learning achieves a top-5 classification accuracy close to the upper
bound, while simultaneously exhibiting a runtime close to the
lower bound.

Index Terms—continual learning, data-parallel training, expe-
rience replay, distributed rehearsal buffers, asynchronous data
management, scalability

I. INTRODUCTION

Deep learning (DL) models are rapidly gaining traction both
in industry and scientific computing in many areas, including
speech and vision, climate science, cancer research, to name
a few [1], [2].

As data sizes and pattern complexity keep increasing, DL
models capable of learning such data patterns have evolved
from all perspectives: size (number of parameters), depth
(number of layers/tensors), and structure (directed graphs that
feature divergent branches, fork-join, etc.). Despite increasing
convergence between DL and HPC [3], which has led to
the adoption of various parallelization techniques [4] (data-
parallel, model parallel, hybrid), the training of DL models
remains a time-consuming and resource-intensive task. Indeed,
the amount of compute used in the largest AI training runs has
doubled every 3.4 months since 2012.

DL models are typically trained on large, many-GPU
("HPC") systems that have access to all training data from

the beginning (e.g., from a parallel file system), by using an
iterative optimization technique (e.g., stochastic gradient de-
scent) to revisit the training data repeatedly until convergence.
However, DL applications increasingly need to be trained with
unbounded datasets that are updated frequently. For example,
scientific applications using experimental devices such as
sensors need to quickly analyze the experimental data in order
to steer an ongoing experiment (e.g., trigger an automated
decision). In this case, repeatedly retraining the model from
scratch as new samples arrive is not an option: as training data
keeps accumulating, this would take increasingly longer and
consume more resources (GPU hours, storage space), leading
to both prohibitive runtimes as well as inefficient resource
usage.

One approach to this problem is to train the DL model
incrementally (i.e., the training proceeds with relatively in-
expensive updates to the model’s parameters based on just
the new data samples). If data increments are small, such
an approach achieves high performance and low resource
utilization. Unfortunately, it can also cause the accuracy of
the DL model to deteriorate quickly—a phenomenon known as
catastrophic forgetting [5]. Specifically, the training introduces
a bias in favor of new samples, effectively causing the model to
reinforce recent patterns at the expense of previously acquired
knowledge. Increased differences between the distributions of
the old vs. new training data amplifies the bias, often to the
point where a single pass over the new training data is enough
to erase most, if not all, of the patterns learned previously.

Thus, we are faced with the challenge of avoiding catas-
trophic forgetting efficiently. We aim to achieve an accuracy
close to the one achieved by retraining the DL model from
scratch, but we also aim to achieve high performance, scalabil-
ity, and low resource utilization just like incremental training.
To address this trade-off, continual learning (CL) is gaining
popularity in the machine learning community [6]. In a broad
sense, CL mitigates catastrophic forgetting by complementing
incremental training with a strategy to reinforce patterns seen
earlier.

Proposed CL strategies include rehearsing historic training
samples, co-training a generative DL model that can mimic
old patterns by generating new samples on demand, and
regularization (i.e., rules that constrain DL model parameter
updates to prevent catastrophic forgetting), among others. We
focus here on continual learning based on rehearsal. With
this strategy, historic training samples that are representative

of patterns seen earlier are retained in a limited-size rehearsal
buffer. Small subsets of incoming training samples (called
minibatches) are then augmented to include additional samples
from the rehearsal buffer. Finally, the rehearsal buffer is
updated by replacing some of its samples with newer ones. A
benefit of this CL strategy is that it requires no modifications
to either the DL model architecture or the training process.
In contrast, other CL approaches require different hyperpa-
rameters, additional code to implement regularization, and/or
additional generative DL models.

Prior work on rehearsal-based CL [7], [8], [9] has em-
ployed a single rehearsal buffer, with the goal of leveraging
a single GPU. Here, we tackle the problem of enabling high-
performance, scalable, and resource-efficient rehearsal-based
CL on multiple GPUs. Data-parallel training is commonly
used to reduce training time. In this approach, the DL model is
replicated on multiple GPUs (on the same or different compute
nodes) and each DL model replica is trained with a different
data shard, with the gradients computed by different replicas
averaged periodically to keep the replicas in sync.

Efficient continual learning based on rehearsal that delivers
high performance, scalability, and low resource utilization in
combination with data-parallel training is difficult for two
reasons: (1) the cost of managing a rehearsal buffer under
concurrency (minibatch augmentations and constant updates)
is significant, and (2) efficient data-parallel training requires
the instantiation of multiple independent rehearsal buffers, one
per DL model replica, thus limiting the possible combinations
for minibatch augmentations (i.e., reducing both their diversity
and quality). To address these challenges, we propose the
use of a distributed rehearsal buffer: it focuses on how
to minimize the overheads involved by the rehearsal buffer
management while retaining the quality of minibatch aug-
mentations under data-parallel training. We summarize our
contributions as follows:

• We define the concept of rehearsal buffers to address
continual learning, and introduce extensions to leverage
them for data-parallel training (Section IV).

• We introduce key design principles such as asyn-
chronous techniques to hide the overhead of managing
rehearsal buffers and to enable a full spectrum of
combinations for minibatch augmentations. We achieve
this by sampling the rehearsal buffers of remote DL
model replicas using low-overhead, RDMA-aware, all-
to-all communication patterns (Section IV-D).

• We leverage these design principles to implement a dis-
tributed rehearsal buffer prototype that we integrated
with PyTorch, a popular AI runtime (Section V).

• We report on extensive experiments on 128 GPUs
of the ANL’s ThetaGPU supercomputer with three
different models (ResNet-50, ResNet-18, GhostNet-50)
and four tasks derived from the ImageNet-1K dataset.
Note: We specifically focus on training classification
models (models for generative AI are out of the scope
of this paper).

• In the best case with ResNet-50, we show that our method

can improve the top-5 evaluation accuracy from 23.1% to
80.55% compared with incremental training, with just a
small runtime increase (Section VI).

II. BACKGROUND AND PROBLEM STATEMENT

In this section we revisit several key DL concepts to set the
context for our work.

Basics of Deep Learning Training: DL is an iterative
process: starting with an initial set of weights w chosen
randomly, the training data is visited multiple times to update
w. Each full visit is called an epoch, and during each epoch
the training data is shuffled and split into minibatches. Each
minibatch is processed in an iteration that involves a forward
pass to predict the output, and a backward pass that calculates
the intermediate gradients corresponding to the differences
between the output and the ground truth, which are then used
to update w.

Data Parallelism: a typical optimization used in practice is
to create multiple DL model replicas on different GPUs, each
of which is trained at the same time on a different shard of the
training data [4], effectively reducing the number of iterations
in an epoch (hence called data-parallelism). In this case, the
forward and backward pass can run independently, except
that after each backward pass, the gradients computed by all
replicas are averaged (by using a collective communication
pattern such as all-reduce) before adjusting w. It ensures that
the DL model replicas always apply the same updates on w
and are thus in sync.

Catastrophic Forgetting: Although efficient on static train-
ing data, the iterative process does not perform well when new
training data arrives over time. In this case, if we continue
training the DL model using only minibatches from the new
training data (called incremental training), the DL model
will drift in the direction of the new training data. This
phenomenon is known as catastrophic forgetting. It echoes
the more general plasticity-stability dilemma [10], where (1)
plasticity refers to the ability of the model to learn concepts in
the current task, and (2) stability refers to its ability to preserve
knowledge acquired in previous tasks.

Task-incremental CL vs. Class-incremental CL: contin-
ual learning (CL) aims to enable refinement of DL models
using continuously arriving new training data while mitigating
catastrophic forgetting, such as to preserve the knowledge
gained during the previous training. In the case of classification
problems, we can either assume that the output classes remain
fixed (i.e., new training samples belong to one of the pre-
determined classes) or that they can change (i.e., new training
samples may introduce new classes). The former is called
task-incremental while the latter is called class-incremental
continual learning [11]. In this paper, we focus on the latter,
which is the most general and difficult case. If the problem
solved is not a classification but involves a generative DL
model, this can be reduced to the case of task-incremental
continual learning (i.e., the meaning of the output is fixed and
does not change).

Streaming CL vs. Batched CL: another important aspect is
how we reason about the increments: we can either assume the
new training data continuously arrives from a stream and can
be visited only once before it is discarded (called streaming
CL or single epoch CL [12]), or the new training data arrives
in batches that can stored and revisited over multiple epochs
(called batched CL). The latter is more common in practice,
hence we focus on it in this work.

Problem Statement: As mentioned in Section I, retraining
the model from scratch on all previously accumulated data
is not feasible, because each epoch would contain more and
more minibatches as more tasks are being learnt. This would
cause long delays until the DL model is ready for inferences
after each task. Furthermore, this would cause an explosion
of storage space needed to retain the history of all training
samples. Our goal is to devise scalable CL techniques that
retain a classification accuracy close to the train-from-scratch
approach (which is the upper bound), while simultaneously
achieving a runtime close to incremental training (which is the
lower bound). The main research question we aim to answer
is how to combine rehearsal-based continual learning with
data-parallel training in order to achieve this goal.

III. RELATED WORK

Experience Replay (that we refer to as rehearsal) is
a simple continual learning technique in which the model
knowledge is reinforced by replaying samples from previous
tasks [13]. These methods selectively store previously en-
countered raw data samples, called representatives (sometimes
referred to as exemplars), into a rehearsal buffer, which is
used to augment the minibatches of new training tasks. The
augmentation involves appending a fixed number of represen-
tatives to each minibatch corresponding to the new training
data in order to obtain a large minibatch that mixes new
and old training samples. The advantage of this approach
is that it can mitigate catastrophic forgetting transparently
[14], without the need to change existing training methods.
This claim is supported by works that not only emphasize
its efficacy compared to alternative methods [15], but also
propose diverse extensions to enhance its performance [16].
HAL [17] complements Experience Replay with regularization
to align the model responses with data points encoding classes
encountered in previous tasks. DER (Dark Experience Replay)
and DER++ [18] demonstrate that replaying model responses
instead of data labels (or doing both) yields to a better achieved
accuracy than Experience Replay alone. eXtended-DER [19]
takes an extra step over previous methods by preparing future
classification heads to accommodate future classes.

Data Management Techniques for Training Data. Read-
ing the training data directly from a shared repository (such as
a parallel file system) has been shown to introduce significant
bottlenecks [20]. DeepIO [21] uses a partitioned caching
technique for data-parallel training, relying heavily on RDMA
for high performance I/O. DIESEL [22] deploys a distributed
cache across compute nodes to handle multiple DL training
instances sharing the same training data. MinIO [23] focuses

TABLE I: Continual Learning notation

T number of CL tasks
K number of classes
B distributed rehearsal buffer
Bn local rehearsal buffer for process n
Ri

n subset of Bn containing representatives of class i
c number of candidates per minibatch
b minibatch size (number of samples per minibatch)
r number of representatives added to augmented minibatches

on eviction-free caching of training data, which has low
overheads and is easy to implement but may lead to higher
miss rate. NoPFS [24] introduces a performance model that
can leverage multi-level node-local storage for distributed
caching of training samples. Lobster [25] further refines this
approach by optimizing cache evictions and by enabling load
balancing in the data pipeline. Such approaches optimize the
data pipeline and complement our proposal.

Positioning. In this work, we propose asynchronous data
management techniques that enable the design and implemen-
tation of a scalable distributed rehearsal buffer abstraction,
which is instrumental in enabling continual learning to take
advantage of data-parallel techniques. To our best knowledge,
we are the first to explore this direction.

IV. CONTRIBUTION: DISTRIBUTED REHEARSAL BUFFERS

In this section we discuss the key design principles that are
at the foundation of our proposal.

A. Distributed Rehearsal Buffer

In a basic version of rehearsal, a buffer B stores representa-
tive data samples from previous tasks. Every class i observed
so far is attached to its own rehearsal buffer Ri ∈ B. At each
iteration, r representatives from B are used to augment the
incoming minibatch m of size b, such that we obtain a larger
minibatch of size b+r mixing representatives and new training
samples. This new minibatch is an augmented minibatch. After
training with the augmented minibatch, c training samples,
called candidates, are selected from minibatch m to be inserted
into the relevant buffer Ri. If any of the Ri buffers is full, then
the new candidates replace old representatives as needed (e.g.,
at random or using a different strategy). This process ensures
that each Ri buffer remains up-to-date at fine granularity (i.e.
after each iteration), holding representatives of both the current
and all previous tasks.

Starting from this basic version, we propose to design
a distributed rehearsal buffer that can be used with data-
parallel training. In our case, the training uses N distributed
processes (each attached to a dedicated GPU). Each process
maintains its own rehearsal buffer Bn. Thus, we can leverage
the aggregated spare memory provided by a large number of
compute nodes to store more representatives compared with
a single centralized buffer. Conceptually, the disjoint union of
local rehearsal buffers Bn can be seen as a single distributed
rehearsal buffer B as depicted in Figure 1:

Fig. 1: For every process n, a rehearsal buffer Bn contains
representatives from the classes seen so far. The distributed
rehearsal buffer B contains representatives from the K classes.

B =

N⊔
n=0

K⊔
i=0

Ri
n =

N⊔
n=0

Bn

Assume each process can spare up to Smax local memory
for storing Bn. Given increasing DL model sizes, the spare
host and GPU memory is under pressure, thus Smax is limited.
On the other hand, we need to divide Smax evenly between the
classes to avoid a bias in the selection of the representatives.
Therefore, each Ri

n can grow up to a size of Smax/K, which
means with increasing number of classes K, each buffer
Ri

n shrinks. However, by using a distributed rehearsal buffer,
each Ri

n scales with the number of processes to a size of
|Ri

n|max = N × Smax/K, which increases the number of
representatives per class and therefore the diversity and qual-
ity of the minibatch augmentation. This complements data-
parallel training well, since data-parallel training improves
performance and scalability, not the quality of the results.

B. Selection and Eviction Policies

Since the rehearsal buffer B is smaller than the dataset
D, we are concerned about selection and eviction policies
for managing the distributed rehearsal buffer. One approach
to populate the local rehearsal buffers is to select candidate
samples from incoming minibatches at random. To this end,
we propose Algorithm 1, which is executed by each process
n at every training iteration. Specifically, we pass the current
minibatch mn of size b. Every sample of mn has a c/b
probability to be pushed into the buffer Ri

n corresponding to
the class i. As such, c acts like an update rate: i.e. the higher
the c, the more often representatives are renewed in rehearsal
buffer Bn. This approach has been implemented in the Naive
Incremental Learning (NIL) algorithm [26] and demonstrates
low computational complexity.

Since representatives are distributed among Ri
n according

to their class labels, the competition between new candidates
and stored representatives is done by class. Thus, candidate
samples belonging to a specific class compete against the
existing representatives of the same class. As depicted in
Figure 2, a candidate sample of class i replaces a random

Fig. 2: For a given process n, c candidates from the incoming
minibatch are sampled and used to populate Bn. If the buffer
for class i is full, representatives from Ri

n are replaced at
random. The figure depicts the rehearsal buffer Bn state for
two subsequent iterations for c = 2.

Algorithm 1: Rehearsal buffer updates with new can-
didates for each process n

1 Function update_buffer(m):
2 C ← select c random candidates from minibatch m
3 for c ∈ C do
4 if |Ri

n| >= |Ri
n|max then

5 replace a random representative from Ri
n with c

6 else
7 append c to Ri

n

representative in Ri
n if the latter is full. Our random selection

policy means that each training sample of a given class has
the same probability of being replaced, regardless of whether
it is a recent or old sample. Thus, we independently obtain a
good mix of old and new training samples in each buffer Ri

n.
This approach both increases the quality of the augmentations
and forms an embarrassingly parallel pattern that is easy to
implement and that has a low performance overhead. The
selection and eviction policies introduced here are operating
at the process level. When working with nonuniform sample
distributions across data shards, load balancing strategies could
fill remote buffers.

C. Global Minibatch Augmentation using RDMA-enabled Dis-
tributed Sampling of Representatives

Experience Replay consists in interleaving representatives
with the current minibatch m to build a new augmented
minibatch m′. As depicted in Figure 3, at every training
iteration, r representatives are sampled without replacement
from B to assemble m′, whose size is b+r. We call this oper-
ation minibatch augmentation. Existing research has shown
that uniform sampling from a rehearsal buffer is effective
in many cases [26], [14], while demonstrating no additional

Fig. 3: On a given process n, every incoming minibatch
is augmented with r representatives sampled randomly and
without replacement from the distributed rehearsal buffer B.
Here, r = 2 on two subsequent iterations. Sampling from B in-
troduces communication between the N distributed processes.

computational complexity. Thus, we adopt the same principle
in our proposal.

With a distributed rehearsal buffer B, each process n needs
to sample r representatives concurrently with the other pro-
cesses. To this end, we could simply adopt a naive embarrass-
ingly parallel strategy that chooses the r representatives of
each process n from the local rehearsal buffer Bn. Although
highly efficient and easy to implement, such a strategy limits
the number of combinations possible for the selection of the r
representatives relative to the global rehearsal buffer B, which
reduces the diversity and the quality of the augmentations. This
effect is similar to the bias introduced by sharding for data-
parallel training (as discussed in Section II). As a consequence,
we need to provide a fair sampling that gives every training
sample in B, regardless of its location, an equal opportunity to
be selected among the r representatives of each process. This
is a difficult challenge for several reasons: (1) competition
for network bandwidth, since many processes sharing the
same compute node need to transfer training samples from
remote rehearsal buffers at the same time; (2) difficult all-
to-all communication patterns, since each process needs to
access the rehearsal buffers of every other process; (3) low
latency requirements, since each process needs to access a
small number of training samples from each remote rehearsal
buffer.

To address this challenge, we leverage two technologies
commonly used in HPC. First, we propose to pin the space
reserved for each local rehearsal buffer Bn into the memory
of the compute node hosting process n. Then, we expose
the pinned memory for RDMA access. Using this approach,
we enable low-overhead, fine-grain access to the rehearsal
buffer of each process from every other process. Second,
since the requests of the processes to sample remote rehearsal
buffers are not synchronized, we cannot simply rely on existing
patterns such as MPI all-to-all collective communication, as

this would introduce unnecessary delays. Therefore, we pro-
pose an RPC-based communication pattern atop Mochi [27],
an HPC-oriented set of services that provides low-overhead
RDMA-enabled point-to-point RPCs. Specifically, we intro-
duce several key concepts such as: (1) progressive assembly of
augmented minibatches using concurrent asynchronous RPCs,
which hide the remote access latency; (2) RPC consolidation to
transfer the training samples in bulk from the same remote re-
hearsal buffer, reducing the number of RPCs; (3) concurrency
control based on fine-grain locking to guarantee consistency
and mitigate contention between updates to the rehearsal
buffers and local/remote reads issued by augmentations.

D. Asynchronous Management of Rehearsal Buffers

Even with our proposed optimizations, the overheads of
managing a distributed rehearsal buffer may still be significant.
Therefore, we also devise an asynchronous technique to hide
these overheads, such that a training iteration can proceed
without blocking every time that it needs to interact with the
distributed rehearsal buffer.

To this end, we revisit the major steps of CL based on
rehearsal and data-parallel training: 1 prepare the augmented
minibatches, which involves global sampling from the dis-
tributed rehearsal buffer; 2 update the distributed rehearsal
buffer using the new samples of the original minibatches; 3
perform a forward pass with the augmented minibatch as input
data; 4 perform a backward pass that averages the gradients
and updates the parameters w of each DL model replica. One
key observation is that we start with an empty rehearsal buffer.
Hence, for the first training iteration we do not need to perform
an augmentation. However, after step 2 , we can prepare an
augmented minibatch in advance for the next training step.
This applies for all subsequent iterations.

Therefore, we can use the following strategy: 1 wait until
r representatives were collected asynchronously by global
sampling started during the previous iteration and concatenate
them with the current minibatch to obtain an augmented
minibatch; 2 start an asynchronous update of the distributed
rehearsal buffer using the original minibatch, followed by
asynchronous global sampling of the next r representatives;
perform the same steps 3 and 4 as above. This process is
illustrated in Figure 4.

Using this approach, the communication and synchroniza-
tion overheads related to the management of the rehearsal
buffer can be overlapped with the training steps. Indeed, the
training iterations only need to wait if the updates of the
rehearsal buffer and the global sampling cannot keep up with
it and introduce a delay.

It is important to note though that even in the case when
the rehearsal buffer overhead can be fully absorbed asyn-
chronously (i.e. no wait at step 1), the training iteration oper-
ates with an augmented minibatch of size b+r (instead of the
original size b). Thus, each training iteration is slowed down
by a factor of r/b. This overhead is inherent to rehearsal-based
CL and cannot be avoided. However, by fixing r and hiding the
rehearsal buffer management overheads through asynchronous

Fig. 4: Asynchronous updates of the rehearsal buffers and
global augmentations: r representatives sampled globally be-
ginning with the previous iteration are used by the training
loop to assemble an augmented minibatch on each process n.
Meanwhile, the distributed rehearsal buffer extracts candidates
from the current minibatch to update each Bn locally, then
collects the next r representatives using global sampling.

techniques, our approach can deliver performance levels close
to the theoretical lower bound at scale.

V. IMPLEMENTATION DETAILS

We implemented our approach as a high-performance, open-
source C++ library [28] that offers convenient bindings for
Python using pybind11.

There are multiple reasons for this choice: (1) our approach
requires low-overhead access to system-level resources, no-
tably RDMA-enabled RPCs, which is not available for Python;
(2) even if bindings existed, the overheads of interpreted
languages are unacceptable in our case given the need to
provide consistency and manage multiple connections under
concurrency; (3) Python has limited support for multi-threaded
concurrency due to the global interpreter lock that allows
only a single thread to run interpreted code. Nevertheless, the
complexity of our proposal is completely hidden from end-
users: the distributed rehearsal buffer integrates seamlessly
with the training loop using a convenient update primitive
encapsulating all our contributions, illustrated in Listing 1.

1 for i in range(no_minibatches):
2 m = DataPipeline.get_next_minibatch()
3 r = RehearsalBuffer.update(m)
4 m_a = concat(m, r)
5 Model.train(m_a)

Listing 1: Example of a training loop integrating our proposal.
The update primitive (highlighted) waits until r representatives
were collected by the asynchronous global sampling, then
updates the rehearsal buffer, and starts the next global
sampling.

For the purpose of this work, we integrate our proposal with
PyTorch and rely on Horovod [29] to enable data parallelism.
We rely on NVIDIA DALI as the data pipeline that provides

the original minibatches while overlapping with the training
iterations. Thanks to the encapsulation into a separate primi-
tive, our approach can be easily extended to support other AI
runtimes (such as TensorFlow), data-parallel implementations
or data pipelines.

To take advantage of high-performance, fine-grain par-
allelism, all operations are executed in a separate system
pthreads and CUDA operations involving copies between
GPUs and host memory are executed in a dedicated CUDA
stream isolated from the Python frontend. We used Argobots
(part of the Mochi framework [27]) for implementing a low-
overhead, userspace thread pool that serves concurrent requests
to update and read the training samples from rehearsal buffers.
We used Thallium (also part of Mochi) to implement global
sampling leveraging non-blocking RDMA-enabled RPCs.

VI. EVALUATION

In this paper we specifically focus on training classifica-
tion models. We perform experiments on ANL’s ThetaGPU
supercomputer to study the benefits of our proposal with
respect to both classification accuracy and training duration.
Our evaluation seeks to answer the following questions:

• How do parameters r (representative count) and |Bn|
(rehearsal size) impact achieved classification accuracy?

• How much does accuracy degrade with CL, compared
to the case where the model re-learns from scratch each
time new data arrives?

• Do minibatch augmentations increase training time?
• How much does training time increase, compared to

incremental training?
• What is the memory cost of rehearsal-based learning?

A. Experimental Setup and Methodology

Training Dataset: we use the ImageNet-1K dataset, which
is widely used in the image classification community. We
specifically use the variant with face-blurred images [30],
containing 1.2M training images split among 1000 object
classes. Each class contains about 1300 training and 50
validation samples. We use standard data augmentations of
random horizontal flips and crops resized at 224x224 pixels.

Continual Learning Scenario: we recall that we focus
on the class-incremental (“Class-IL”) scenario, in which there
are clear and well-defined boundaries between the tasks to be
learned (i.e. there is no overlap between classes of different
tasks). We design a sequence of 4 disjoint tasks, each contain-
ing 250 classes from ImageNet. Each of them gets revisited
30 times (i.e. the model is trained for 30 epochs on every
task), which corresponds to a total of 120 training epochs.
The model can not revisit previous tasks.

Learning Models: to show that our rehearsal-based ap-
proach to CL is transparent with respect to the model, we
use the 3 following convolutional networks and their corre-
sponding configurations:

• ResNet-50 [31] is the standard with ImageNet. We use
the SGD optimizer with a learning rate of 0.0125; a per-
task learning rate increase on 5 warmup epochs as in [32];

a gradual decay from 0.5 to 0.05 to 0.01 at epochs 21,
26, and 28, respectively; and a weight decay of 1e-5.

• ResNet-18 [31] has roughly half the number of param-
eters of ResNet-50 and is thus faster to train (i.e. its
minibatch processing time is shorter). We use the same
hyperparameters as ResNet-50.

• GhostNet-50 [33] implements a different architecture to
minimize inference time on resource-constrained devices.
We use the SGD optimizer with a learning rate of 0.01;
the same warmup as ResNet’s; the same schedule at
epochs 15, 21, 28; and a weight decay of 1.5e-5.

We enable Automated Mixed Precision (AMP) introduced
in [34] to speed up the training.

Scale: we apply the linear scaling rule [32] by multiplying
the learning rate with the number of processes N . However,
with an augmented minibatch size set to b + r = 63 training
samples, which corresponds to a global batch size of N × 63
in our data-parallel setting, the latter becomes greater that 8K
with N = 128. This requires further consideration to mitigate
the instability introduced by such large batches [32]. We do
so by setting a maximum rate independent of the minibatch
size equal to 64, as suggested theoretically in [35].

Performance Metrics: we report the top-5 accuracy
achieved on the validation set to measure the model per-
formance. Top-5 accuracy means any of the model’s top 5
highest probability predictions is considered as correct. Let
ai,j denote the top-5 evaluation accuracy on task j using the
model snapshot obtained at the end of task i. The accuracy
(fraction of correct classifications) assessing the DL model
performance on all previous tasks is defined as follows:

accuracyT =
1

T

T∑
j=1

aT,j (1)

Computing Environment: we run our experiments on
up to 16 nodes of ANL’s ThetaGPU supercomputer (128
GPUs). Each node comprises eight NVIDIA A100 GPUs (40
GiB HBM), two AMD Rome CPUs and NVIDIA Mellanox
ConnectX-6 interconnect technology. We use the following
software environment: Python 3.10, PyTorch 1.13.1, Horovod
0.28.1, CUDA 11.4, NVIDIA DALI 1.27.0, OpenMPI 4.1.4,
Mercury 3.3 as well as libfabric 1.16 compiled with CUDA
support.

B. Impact of the Rehearsal Buffer Size on Accuracy

As detailed in Section IV-A, distributing the training across
N processes allows to leverage the aggregated memory to store
more representatives in the rehearsal buffer |B| = N × |Bn|.
Sampling representatives globally allows to distribute a certain
percentage of the input dataset over all processes (e.g., storing
10% of the input dataset means in practice storing 10%/N
of the data per process). To showcase the effect of different
rehearsal buffer sizes on the accuracy, we vary |B| from 2.5%,
5%, 10%, 20%, to 30% of the total number of ImageNet data
samples (1.2M images). These values correspond respectively

to 1.93 GB, 3.85 GB, 7.71 GB, 15.41 GB and 23.12 GB of
raw data stored in the aggregated memory.

We measure the performance of our approach with different
rehearsal buffer sizes by applying Equation 1 once at epoch
120 (end of the training), in order to evaluate the DL model
on all previous tasks i.e. on all the classes seen until then.
We consider only ResNet-50 for this study, and run these
experiments on 2 nodes (16 GPUs). We report the results in
Figure 5a. As expected, the larger the rehearsal buffer size
|B|, the better the diversity among stored representatives. As
a result, the model forgets less knowledge acquired in previous
tasks, resulting in a higher final accuracy. In our setting, storing
30% of the input data samples as representatives yields to a
final top-5 accuracy of 80.55%, which is significantly better
than the accuracy achieved with |B| = 2.5% (55.83%). We
emphasize that storing 30% of ImageNet samples amounts
to storing 1.45 GB of raw data per process (with N = 16),
which is only a fraction of the memory available on typical
HPC systems (512 GB of host memory per compute node).

C. Impact of Other Rehearsal-related Hyperparameters

Parameter c (introduced in Section IV-B) is less relevant in
class-incremental scenarios, as: 1) classes from different tasks
are disjoint, and 2) the competition to populate the buffer is
done per class. As a result, representatives from previous tasks
never get evicted under this setting. We set c = 14, which
in our experimental setup only impacts the renewal rate of
representatives from the current task.

Parameter r (introduced in Section IV-C) has a direct impact
on the balance between plasticity and stability, where the
model should be both plastic enough to learn new concepts,
and stable enough to retain knowledge. Mixing too many rep-
resentatives with incoming minibatches decreases the ability of
the DL model to learn the current task, resulting in a degraded
accuracy. A larger value for r favors stability over plasticity.
Authors in [26] set r to 15% of the minibatch size b: we adopt
a similar ratio, setting b = 56 and r = 7.

D. Comparison with Baseline Approaches

We apply the insights obtained in the experiments detailed
in Sections VI-B and VI-C, and we set |B| = 30% and
r = 7 to achieve high accuracy in the remainder of this
paper. The following baselines instantiate models without any
regularization or rehearsal:

• Incremental training: updates the model with the train-
ing data corresponding to a single task, one at a time. No
training samples of any previous tasks are revisited.

• Training from scratch: re-trains the model from scratch
at every new task, using all accumulated training samples
of both the new task and the previous tasks.

We consider ResNet-50 for this study. In Figure 5b, the
top-5 evaluation accuracy achieved by rehearsal (80.55%)
greatly outperforms the incremental training baseline. The
latter suffers from catastrophic forgetting and is regarded as the
lower bound accuracy-wise (23.3%). On the opposite, training
from scratch as new data arrives is regarded as the upper bound

2 5 10 20 30
Rehearsal buffer size (%)

50

60

70

80

90

To
p5

va
la

cc
ur

ac
y

(%
)

(a) Accuracy w.r.t. different rehearsal buffer
sizes |B| (percentage of the input dataset).
Each data point is the average of the top-5
accuracy obtained on all previous tasks.

0 25 50 75 100 125

Epoch

0

25

50

75

To
p5

va
la

cc
ur

ac
y

(%
)

0 25 50 75 100 125

Epoch

0

25

50

75

100

Tr
ai

ni
ng

tim
e

(m
in

)

Our Approach From Scratch Incremental

(b) |B| = 30% and r = 7. Left: accuracy w.r.t. epoch number. Our rehearsal-based approach
achieves a final accuracy of 80.55%. Right: training time w.r.t. epoch number. Our approach
induces a small runtime increase compared with incremental training, which stays linear.

Fig. 5: Top-5 accuracy for ResNet-50, 16 GPUs, ImageNet (4 tasks).

(91%), only about 10.5% above the accuracy achieved with our
rehearsal-based approach.

In Figure 5b, we observe that incremental training has the
shortest runtime as no task gets revisited (lower bound). On
the other hand, the duration of training from scratch increases
cubically with the number of tasks to learn T (sum of the
first T triangular numbers). This is noticeable as a large gap
between the two approaches as the number of tasks increases.
Just like incremental training, our rehearsal-based approach
exhibits a linear runtime with just a slight increase proportional
to the r additional samples added to the minibatch. We
demonstrate in the next section that this overhead is not
introduced by the rehearsal buffer management itself. Thus,
we conclude that our approach combines the best of both
baselines: in terms of accuracy, it is close to the from-scratch
training approach, while simultaneously nearing incremental
training in terms of training time.

E. Rehearsal Buffer Management Breakdown
In Figure 6 we examine the time taken for the individual

operations within a training iteration. This study allows us
to understand how well our approach overlaps the rehearsal
buffer management with the actual training process.

Specifically, we measure the time taken to obtain a new
minibatch from DALI (denoted Load), which itself uses an
asynchronous data pipeline that prefetches and shuffles the
training data. Then, we measure the duration of the forward
and backward passes as reported by PyTorch (denoted Train).
The time taken for Load followed by Train is the lowest
possible overhead perceived by the application; this time is
represented by the stacked bars on the left of each of the
11 pairs of data bars in Figure 6. In the background, our
approach handles updates to the individual rehearsal buffers
(denoted Populate buffer), the distributed sampling of the
remote rehearsal buffers, and the minibatch augmentation
(denoted Augment batch); this time is represented by the right-
hand stacked bars in the figure. As long as the stacked bars on
the right are lower than those on the left, our approach will not
cause the training iterations to wait for the augmented mini-
batches. This means there is a full overlap and the rehearsal

buffer management is completely hidden in the background
thanks to our asynchronous techniques.

Indeed, we observe that this condition holds for all models
and all scales used in our experiments. Furthermore, the total
overhead of our approach is just a fraction of the Load and
Train overheads. Since the Train overhead dominates (thanks
to DALI’s asynchronous data pipeline), we conclude that there
is a large margin left to optimize the forward and backward
passes without reducing the effectiveness of our approach.

Moreover, another interesting effect is visible: we cannot
simply reduce the duration of the forward pass and backward
pass at scale by optimizing the computations: when we switch
from ResNet-50 to ResNet-18, which is significantly less com-
putationally expensive to train, the duration of Train increases
because all-reduce gradient reductions are expensive and begin
to stall the computations. Thus, based on the observed trends,
we hypothesize that our approach remains effective at scale
even in extreme cases of computationally trivial models.

F. Scalability
We study the scalability of our approach for all three models

compared with the two baselines for an increasing number of
data-parallel processes (GPUs). Specifically, we measure the
final evaluation top-5 accuracy in Figure 7a, where Equation 1
is applied once at epoch 120. We also measure the overall
runtime to train all tasks and depict it in Figure 7b.

All three approaches retain similar accuracy for an in-
creasing number of processes. Since incremental training and
training from scratch make direct use of data parallelism, this
finding is not surprising. On the other hand, the same trend
is visible for our approach, which demonstrates that it applies
global sampling correctly at scale and therefore avoids biases.

All approaches exhibit shorter runtimes for increasing num-
bers of data-parallel processes. Note that the gap between our
approach and incremental training does not increase with the
number of processes. Instead, the gap is decreasing, which
shows that our approach is scalable and can successfully
overlap the asynchronous updates of the rehearsal buffer
and the global sampling with the training iterations, despite
increasing complexity of all-to-all communication.

Fig. 6: Time breakdown (ms) for the training loop and rehearsal buffer management, for each of the three models and for
different numbers of GPUs, each averaged across 35 minibatches.

16 32 64 128
Number of GPUs

0

50

100

To
p5

va
la

cc
ur

ac
y

(%
)

23
.2

8
80

.5
5

91
.0

2

23
.4

2
80

.2
3

90
.9

0

23
.2

6
80

.1
2

90
.9

1

23
.0

5
78

.7
8

89
.7

8
resnet50

16 32 64 128
Number of GPUs

22
.7

7
73

.2
4

86
.9

2

22
.7

3
73

.7
0

86
.6

3

22
.7

4
72

.9
3

87
.0

1

22
.4

4
72

.2
7

85
.9

8

resnet18

16 32 64
Number of GPUs

21
.8

4
64

.6
2 80
.7

1

21
.7

0
65

.5
7

80
.2

5

21
.5

6
63

.8
5 80
.0

3

ghostnet

Incremental Our Approach From ScratchIncremental Our Approach From ScratchIncremental Our Approach From Scratch

(a) Final top5 evaluation accuracy w.r.t. the number of processes (GPUs) N .

16 32 64 128
Number of GPUs

0

100

200

300

Tr
ai

ni
ng

tim
e

(m
in

)

51
.1

1
62

.7
5

18
0.

47

27
.5

4
32

.9
1 96

.2
0

19
.2

1
22

.0
0 63

.2
9

14
.0

1
15

.0
3 50
.6

3

resnet50

16 32 64 128
Number of GPUs

32
.9

4
36

.9
4

11
6.

16

16
.6

8
21

.5
2

95
.3

3

11
.0

9
16

.6
6 55

.4
5

14
.9

5
15

.5
3 52
.0

3

resnet18

16 32 64
Number of GPUs

68
.5

9
77

.8
0

24
2.

21

37
.0

1
41

.8
7

12
6.

97

20
.6

9
23

.4
8 69

.0
7

ghostnet

(b) Runtime w.r.t. the number of processes (GPUs) N .

Fig. 7: Accuracy and runtime, |B| = 30%, b = 56 and r = 7 for all 3 models. For ResNet-50, colors match those in Fig. 5b.

Note that with increasing number of processes, our approach
samples r representatives and serves the same number (on the
average). Thus, the average training time of our approach is
only determined by the r additional representatives assembled
into augmented minibatches at every iteration, as shown in
Section VI-E.

VII. DISCUSSION

Efficiency at Scale. The accumulation of representatives
in the distributed rehearsal buffers may grow to large sizes,
but our approach aggregates the free memory on the compute
nodes in a scalable fashion. Specifically, given only a fraction
of the host memory on each compute node (1 GB in our
experiments), our approach was capable of storing 30% of
the ImageNet dataset even at medium scale (128 GPUs).

Furthermore, this amount of free memory can be calculated in
advance as it is bounded w.r.t. the number of classes K and
many additional data reduction techniques can be applied if
necessary (e.g., compression). As in [36], one could suspect
that training repeatedly over a limited number of representa-
tives would end up overfitting the rehearsal buffer, which may
be an inherent limitation of CL. In this regard, our approach
enables the aggregated size to grow proportionally with the
number of processes. Thus, we retain a large and diverse set
of representatives, which increases the quality of continual
learning in combination with data-parallel training beyond the
limits acknowledged by other state-of-art approaches.

Generality. Our distributed rehearsal buffer stores generic
tensors and supports dynamic addition of new classes. In this
paper we demonstrated its effectiveness for class-incremental

classification problems. The approach could however be easily
applied to generative models (in which case we can simply use
one class to store all representatives).

VIII. CONCLUSIONS

This research contributes to the field of CL by leveraging
the concept of rehearsal buffer as a foundational element for
addressing the challenges posed by evolving datasets in DL
models. The concept is extended, to make it suitable for data-
parallel training, thus enhancing the efficiency and scalability
of DL models. We designed and implemented a distributed
rehearsal buffer that handles the selection of representative
training samples, updates of the local rehearsal buffers, and
the preparation of augmented minibatches (sampled from
all remote rehearsal buffers using optimized RDMA-enabled
techniques) asynchronously in the background. A key aspect
is the incorporation of innovative design principles, including
asynchronous techniques and the utilization of low-overhead,
RDMA-aware, all-to-all communication patterns. Extensive
experiments on 128 GPUs of the ThetaGPU with 3 different
models and a sequence of 4 tasks derived from the ImageNet-
1K dataset underscore the scalability and effectiveness of our
approach. As a notable result, in the best case with ResNet-50,
our method can improve the top-5 classification accuracy from
23.1% to 80.55% compared with incremental training, with
just a small runtime increase—an ideal trade-off that combines
the best of both baselines used in the comparison.

REFERENCES

[1] M. Alam, M. Samad, L. Vidyaratne, A. Glandon, and K. Iftekharuddin,
“Survey on deep neural networks in speech and vision systems,”
Neurocomputing, vol. 417, pp. 302–321, 2020.

[2] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive
instabilities in controlled fusion plasmas through deep learning,” Nature,
vol. 568, no. 7753, 4 2019.

[3] E. A. Huerta, A. Khan, E. Davis, C. Bushell, W. D. Gropp, D. S.
Katz, V. V. Kindratenko, S. Koric, W. T. C. Kramer, B. McGinty,
K. McHenry, and A. Saxton, “Convergence of artificial intelligence and
high performance computing on NSF-supported cyberinfrastructure,”
Journal of Big Data, vol. 7, no. 1, p. 88, 2020.

[4] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys,
vol. 52, no. 4, pp. 1–43, 2019.

[5] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
Learning and Motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[6] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change:
Continual learning in deep neural networks,” Trends in Cognitive Sci-
ences, vol. 24, no. 12, pp. 1028–1040, 2020.

[7] M. K. Titsias, J. Schwarz, A. G. d. G. Matthews, R. Pascanu, and Y. W.
Teh, “Functional regularisation for continual learning with gaussian
processes,” arXiv preprint arXiv:1901.11356, 2019.

[8] P. Pan, S. Swaroop, A. Immer, and M. E. Khan, “Continual deep learning
by functional regularisation of memorable past,” Advances in Neural
Information Processing Systems, vol. 33, pp. 4453–4464, 2020.

[9] S. I. Mirzadeh, M. Farajtabar, and H. Ghasemzadeh, “Understanding
the role of training regimes in continual learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7308–7320, 2020.

[10] M. Mermillod and P. Bonin, “The stability-plasticity dilemma: Investi-
gating the continuum from catastrophic forgetting to age-limited learning
effects,” Frontiers in Psychology, vol. 4, p. 504, 2013.

[11] S. Farquhar and Y. Gal, “Towards robust evaluations of continual
learning,” arXiv preprint arXiv:1805.09733, 2018.

[12] H. Hu, A. Li, D. Calandriello, and D. Gorur, “One pass ImageNet,”
arXiv preprint arXiv:2111.01956, 2021.

[13] R. Ratcliff, “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions,” Psychological Review,
vol. 97, no. 2, p. 285, 1990.

[14] Y. Balaji, M. Farajtabar, D. Yin, A. Mott, and A. Li, “The effectiveness
of memory replay in large scale continual learning,” arXiv preprint
arXiv:2010.02418, 2020.

[15] D. Rolnick and A. Ahuja, “Experience replay for continual learning,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[16] P. Buzzega, M. Boschini, and S. Calderara, “Rethinking experience
replay: A bag of tricks for continual learning,” in 25th International
Conference on Pattern Recognition (ICPR), 2021, pp. 2180–2187.

[17] A. Chaudhry, A. Gordo, P. K. Dokania, P. Torr, and D. Lopez-Paz,
“Using hindsight to anchor past knowledge in continual learning,” arXiv
preprint arXiv:2002.08165, vol. 3, 2020.

[18] P. Buzzega, M. Boschini, and S. Calderara, “Dark experience for general
continual learning: A strong, simple baseline,” Advances in Neural
Information Processing Systems, vol. 33, pp. 15 920–15 930, 2020.

[19] M. Boschini, L. Bonicelli, and S. Calderara, “Class-incremental contin-
ual learning into the extended der-verse,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 5, pp. 5497–5512, 2022.

[20] J. Liu, B. Nicolae, D. Li, J. M. Wozniak, T. Bicer, Z. Liu, and I. Foster,
“Large scale caching and streaming of training data for online deep
learning,” in FlexScience’22, Minneapolis, USA, 2022, pp. 19–26.

[21] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-aware I/O pipelining for large-scale deep learning on
HPC systems,” in IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 145–156.

[22] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and Q. Luo,
“DIESEL: A dataset-based distributed storage and caching system for
large-scale deep learning training,” in 49th International Conference on
Parallel Processing, 2020, pp. 1–11.

[23] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Ana-
lyzing and mitigating data stalls in DNN training,” arXiv, 2020.

[24] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler, “Clairvoyant
prefetching for distributed machine learning I/O,” in International Con-
ference for HPC, Networking, Storage and Analysis, 2021, pp. 1–15.

[25] J. Liu, B. Nicolae, and D. Li, “Lobster: Load balance-aware I/O
for distributed DNN training,” in ICPP ’22: The 51st International
Conference on Parallel Processing, Bordeaux, France, 2022.

[26] D. Munoz, C. Narváez, C. Cobos, M. Mendoza, and F. Herrera, “In-
cremental learning model inspired in Rehearsal for deep convolutional
networks,” Knowledge-Based Systems, vol. 208, p. 106460, 2020.

[27] R. B. Ross, “Mochi: Composing data services for high-performance
computing environments,” Journal of Computational Science and Tech-
nology, vol. 35, no. 1, pp. 121–144, 2020.

[28] T. Bouvier, “Distributed Continual Learning,” https://github.com/
thomas-bouvier/distributed-continual-learning, 2021, accessed: 2024-
03-05.

[29] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[30] K. Yang, J. H. Yau, L. Fei-Fei, J. Deng, and O. Russakovsky, “A study of
face obfuscation in ImageNet,” in International Conference on Machine
Learning. PMLR, 2022, pp. 25 313–25 330.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[32] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[33] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More
features from cheap operations,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 1580–1589.

[34] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed precision training,” in
International Conference on Learning Representations, 2018.

[35] L. Bottou and J. Nocedal, “Optimization methods for large-scale ma-
chine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[36] E. Verwimp and T. Tuytelaars, “Rehearsal revealed: The limits and
merits of revisiting samples in continual learning,” in IEEE/CVF In-
ternational Conference on Computer Vision, 2021, pp. 9385–9394.

https://github.com/thomas-bouvier/distributed-continual-learning
https://github.com/thomas-bouvier/distributed-continual-learning

	Introduction
	Background and Problem Statement
	Related Work
	Contribution: Distributed Rehearsal Buffers
	Distributed Rehearsal Buffer
	Selection and Eviction Policies
	Global Minibatch Augmentation using RDMA-enabled Distributed Sampling of Representatives
	Asynchronous Management of Rehearsal Buffers

	Implementation Details
	Evaluation
	Experimental Setup and Methodology
	Impact of the Rehearsal Buffer Size on Accuracy
	Impact of Other Rehearsal-related Hyperparameters
	Comparison with Baseline Approaches
	Rehearsal Buffer Management Breakdown
	Scalability

	Discussion
	Conclusions
	References

